2504000061
  • Open Access
  • Article
String Stable Bidirectional Platooning Control for Heterogeneous Connected Automated Vehicles
  • Dengfeng Pan *

Received: 08 Aug 2024 | Accepted: 18 Sep 2024 | Published: 27 Dec 2024

Abstract

In vehicular platoons, disturbances can be amplified significantly downstream in the platoon if not adequately addressed, potentially leading to traffic jams or collisions. This paper tackles the challenge in maintaining string stability of heterogeneous vehicular platoons under a bidirectional communication topology and a refined constant time headway spacing policy. First, unlike the commonly used constant spacing policy and constant time headway policy, a refined constant time headway policy that combines the benefits of constant spacing and constant time headway policies is presented to enhance platooning safety while maintaining traffic efficiency. Second, a distributed adaptive estimator is designed such that each follower ensures its real-time estimation on the inaccessible leader's full states. The proposed estimators also well accommodate the heterogeneity among vehicles, allowing distinct inertial lag parameters of the vehicle longitudinal dynamics. Third, leveraging a bidirectional communication topology, a distributed scalable platoon controller is developed to guarantee the desired individual stability and string stability requirements of the vehicle platoon without the need of any global information of the communication topology. Formal sufficient conditions are provided on the existence of the desired estimator and controller gains. Finally, numerical simulations are conducted to verify the efficacy of the derived theoretical results. The simulations highlight the string stability and superiority of the proposed spacing policy, demonstrating the effectiveness of the proposed platooning control method.

References 

  • 1.
    Won, M.; Park, T.; Son, S. H. Toward mitigating phantom jam using vehicle-to-vehicle communication. IEEE Trans. Intell. Transp. Syst., 2017, 18: 1313−1324. doi: 10.1109/TITS.2016.2605925
  • 2.
    Wang, Y.M.; Liu, W.B.; Wang, C.; et al. A novel multi-objective optimization approach with flexible operation planning strategy for truck scheduling. Int. J. Network Dyn. Intell., 2023, 2: 100002. doi: 10.53941/ijndi.2023.100002
  • 3.
    Wang, Z.R.; Bian, Y.G.; Shladover, S.E.; et al. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles. IEEE Intell. Transp. Syst. Mag., 2020, 12: 4−24. doi: 10.1109/MITS.2019.2953562
  • 4.
    Guanetti, J.; Kim, Y.; Borrelli, F. Control of connected and automated vehicles: State of the art and future challenges. Annu. Rev. Control, 2018, 45: 18−40. doi: 10.1016/j.arcontrol.2018.04.011
  • 5.
    Jia, D.Y.; Lu, K.J.; Wang, J.P.; et al. A survey on platoon-based vehicular cyber-physical systems. IEEE Commun. Surv. Tutorials, 2016, 18: 263−284. doi: 10.1109/COMST.2015.2410831
  • 6.
    Ge, X.H.; Han, Q.L.; Wu, Q.; et al. Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks. IEEE/CAA J. Autom. Sin., 2023, 10: 1234−1251. doi: 10.1109/JAS.2022.105845
  • 7.
    Swaroop, D.; Hedrick, J. K. String stability of interconnected systems. IEEE Trans. Autom. Control, 1996, 41: 349−357. doi: 10.1109/9.486636
  • 8.
    Zhao, Y.; Liu, Z.C.; Wong, W. S. Resilient platoon control of vehicular cyber physical systems under dos attacks and multiple disturbances. IEEE Trans. Intell. Transp. Syst., 2022, 23: 10945−10956. doi: 10.1109/TITS.2021.3097356
  • 9.
    Ploeg, J.; Van De Wouw, N.; Nijmeijer, H. Lp string stability of cascaded systems: Application to vehicle platooning. IEEE Trans. Control Syst. Technol. 2014 , 22, 786–793. doi: 10.1109/TCST.2013.2258346
  • 10.
    Ploeg, J.; Shukla, D.P.; Van De Wouw, N.; et al. Controller synthesis for string stability of vehicle platoons. IEEE Trans. Intell. Transp. Syst., 2014, 15: 854−865. doi: 10.1109/TITS.2013.2291493
  • 11.
    Guo, G.; Li, D.D. Adaptive sliding mode control of vehicular platoons with prescribed tracking performance. IEEE Trans. Veh. Technol., 2019, 68: 7511−7520. doi: 10.1109/TVT.2019.2921816
  • 12.
    Zhang, X.H.; Sun, J.; Zheng, Z.D.; et al. On the string stability of neural network-based car-following models: A generic analysis framework. Transp. Res. Part C Emerging Technol., 2024, 160: 104525. doi: 10.1016/j.trc.2024.104525
  • 13.
    Zheng, Y.; Xu, M.; Wu, S.N.; et al. Development of connected and automated vehicle platoons with combined spacing policy. IEEE Trans. Intell. Transp. Syst., 2023, 24: 596−614. doi: 10.1109/TITS.2022.3216618
  • 14.
    Li, S.E.; Zheng, Y.; Li, K.Q.; et al. Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities. IEEE Intell. Transp. Syst. Mag., 2017, 9: 46−58. doi: 10.1109/MITS.2017.2709781
  • 15.
    Mousavinejad, E.; Yang, F.W.; Han, Q.L.; et al. Distributed cyber attacks detection and recovery mechanism for vehicle platooning. IEEE Trans. Intell. Transp. Syst., 2020, 21: 3821−3834. doi: 10.1109/TITS.2019.2934481
  • 16.
    Ge, X.H.; Xiao, S.Y.; Han, Q.L.; et al. Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks. IEEE/CAA J. Autom. Sin., 2022, 9: 31−46. doi: 10.1109/JAS.2021.1004060
  • 17.
    Lei, L.; Liu, T.; Zheng, K.; et al. Deep reinforcement learning aided platoon control relying on V2X information. IEEE Trans. Veh. Technol., 2022, 71: 5811−5826. doi: 10.1109/TVT.2022.3161585
  • 18.
    Zhu, Z.R.; Chai, Y.; Yang, Z.M.; et al. Exponential-alpha safety criteria of a class of dynamic systems with barrier functions. IEEE/CAA J. Autom. Sin., 2022, 9: 1939−1951. doi: 10.1109/JAS.2020.1003408
  • 19.
    Jain, V.; Liu, D.; Baldi, S. Adaptive strategies to platoon merging with vehicle engine uncertainty. IFAC Pap. OnLine, 2020, 53: 15065−15070. doi: 10.1016/j.ifacol.2020.12.2027
  • 20.
    Ge, X.H.; Han, Q.L.; Zhang, M.X.; et al. Communication resource-efficient vehicle platooning control with various spacing policies. IEEE/CAA J. Autom. Sin., 2024, 11: 362−376. doi: 10.1109/JAS.2023.123507
  • 21.
    Liu, Y.; Xu, L.W.; Cai, G.S.; et al. Distributed robust platooning control for heterogeneous vehicle group under parametric uncertainty and hybrid attacks. IEEE Trans. Veh. Technol., 2023, 72: 5677−5689. doi: 10.1109/TVT.2022.3231618
  • 22.
    Feng, G.; Dang, D.F.; He, Y.D. Robust coordinated control of nonlinear heterogeneous platoon interacted by uncertain topology. IEEE Trans. Intell. Transp. Syst., 2022, 23: 4982−4992. doi: 10.1109/TITS.2020.3045107
  • 23.
    Xiao, S.Y.; Ge, X.H.; Han, Q.L.; et al. Secure distributed adaptive platooning control of automated vehicles over vehicular Ad-Hoc networks under denial-of-service attacks. IEEE Trans. Cybern., 2022, 52: 12003−12015. doi: 10.1109/TCYB.2021.3074318
  • 24.
    Biroon, R.A.; Biron, Z.A.; Pisu, P. False data injection attack in a platoon of CACC: Real-time detection and isolation with a PDE approach. IEEE Trans. Intell. Transp. Syst., 2022, 23: 8692−8703. doi: 10.1109/TITS.2021.3085196
  • 25.
    Su, Y.F.; Cai, H.; Huang, J. The cooperative output regulation by the distributed observer approach. Int. J. Network Dyn. Intell., 2022, 1: 20−35. doi: 10.53941/ijndi0101003
  • 26.
    Baldi, S.; Liu, D.; Jain, V.; et al. Establishing platoons of bidirectional cooperative vehicles with engine limits and uncertain dynamics. IEEE Trans. Intell. Transp. Syst., 2021, 22: 2679−2691. doi: 10.1109/TITS.2020.2973799
  • 27.
    Feng, S.; Zhang, Y.; Li, S.B.; et al. String stability for vehicular platoon control: Definitions and analysis methods. Annu. Rev. Control, 2019, 47: 81−97. doi: 10.1016/j.arcontrol.2019.03.001
  • 28.
    Pan, D.F.; Ding, D.R.; Ge, X.H.; et al. Privacy-preserving platooning control of vehicular cyber-physical systems with saturated inputs. IEEE Trans. Syst. Man Cybern. Syst., 2023, 53: 2083−2097. doi: 10.1109/TSMC.2022.3226901
  • 29.
    Liu, A.Q.; Li, T.; Gu, Y.; Dai, H. Cooperative extended state observer based control of vehicle platoons with arbitrarily small time headway. Automatica, 2021, 129: 109678. doi: 10.1016/j.automatica.2021.109678
Share this article:
How to Cite
Pan, D. String Stable Bidirectional Platooning Control for Heterogeneous Connected Automated Vehicles. International Journal of Network Dynamics and Intelligence 2024, 3 (4), 100026. https://doi.org/10.53941/ijndi.2024.100026.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.