2504000063
  • Open Access
  • Article
Privacy-Preserving Distributed Entropy Filtering for Microgrids With Innovation Decomposition
  • Yan Liang 1,   
  • Yangkai Chen 2,   
  • Dengfeng Pan 3, *,   
  • Haifang Song 2

Received: 31 Dec 2024 | Accepted: 11 Mar 2025 | Published: 25 Mar 2025

Abstract

Data leakage and cyberattacks are usually inevitable due mainly to the vulnerability of deployed communication networks. The paper proposes a distributed privacy-preserving filter based on the maximum correlation criteria for microgrids. An improved distributed structure is first constructed via adding decomposed innovation from neighbors in update steps. Then, an improved version of the maximum correntropy criterion is defined to evaluate the local filtering performance as well as the consensus performance by adding an innovation-related term. In light of fixed-point iterations and the adopted filter structure, the desired filter gains are obtained recursively by optimizing the proposed index. Furthermore, the profound analysis is performed to disclose that the filtering covariance of external eavesdroppers is larger than target-side filters and hence the privacy of the microgrids can be protected. Finally, an example is exploited to verify its effectiveness.

References 

  • 1.
    Yan, M.Y.; Shahidehpour, M.; Alabdulwahab, A.; et al. Blockchain for transacting energy and carbon allowance in networked microgrids. IEEE Trans. Smart Grid, 2021, 12: 4702-4714. doi: 10.1109/TSG.2021.3109103
  • 2.
    Thale, S.S.; Wandhare, R.G.; Agarwal, V. A novel reconfigurable microgrid architecture with renewable energy sources and storage. IEEE Trans. Ind. Appl., 2015, 51: 1805-1816. doi: 10.1109/TIA.2014.2350083
  • 3.
    Zhao, P.F.; Ding, D.R.; Dong, H.L.; et al. Secure distributed state estimation for microgrids with eavesdroppers based on variable decomposition. IEEE Trans. Circuits Syst. I: Regul. Pap., 2024, 71: 3307-3316. doi: 10.1109/TCSI.2024.3357523
  • 4.
    Su, G.H.; Wang, Z.L. Event-triggered robust integrated observer design for nonlinear interconnected system based on multiple intermediate estimators. IEEE Trans. Circuits Syst. II: Express Briefs, 2024, 71: 3443-3447. doi: 10.1109/TCSII.2024.3362711
  • 5.
    Hu, X.H.; Peng, C.; Shen, H.; et al. Extended dissipative scalable control for AC islanded microgrids. IEEE Trans. Circuits Syst. I: Regul. Pap., 2023, 70: 5421-5432. doi: 10.1109/TCSI.2023.3305525
  • 6.
    Dai, D.Y.; Li, J.H.; Song, Y.H.; et al. Event-based recursive filtering for nonlinear bias-corrupted systems with amplify-and-forward relays. Syst. Sci. Control Eng., 2024, 12: 2332419. doi: 10.1080/21642583.2024.2332419
  • 7.
    Wu, Q.; Song, Q.K. Isolated industrial micro-grid demand response with assembly process based on distributionally robust chance constraint. Int. J. Syst. Sci., 2024, 55: 2211-2223. doi: 10.1080/00207721.2024.2337901
  • 8.
    Qu, B.G.; Wang, Z.D.; Shen, B.; et al. Anomaly-resistant decentralized state estimation under minimum error entropy with fiducial points for wide-area power systems. IEEE/CAA J. Autom. Sin., 2024, 11: 74-87. doi: 10.1109/JAS.2023.123795
  • 9.
    Wang, Y.; Liu, H.J.; Tan, H.L. An overview of filtering for sampled-data systems under communication constraints. Int. J. Netw. Dyn. Intell., 2023, 2: 100011. doi: 10.53941/ijndi.2023.100011
  • 10.
    Rana, M.M.; Li, L.; Su, S.W.; et al. Consensus-based smart grid state estimation algorithm. IEEE Trans. Industr. Inform., 2018, 14: 3368-3375. doi: 10.1109/TII.2017.2782750
  • 11.
    Chen, T.P.; Cao, Y.H.; Chen, X.B.; et al. A distributed maximum-likelihood-based state estimation approach for power systems. IEEE Trans. Instrum. Meas., 2021, 70: 1002110. doi: 10.1109/TIM.2020.3024338
  • 12.
    Qu, B.G.; Wang, Z.D.; Shen, B.; et al. Outlier-resistant recursive state estimation for renewable-electricity-generation-based microgrids. IEEE Trans. Industr. Inform., 2023, 19: 7133-7144. doi: 10.1109/TII.2022.3205354
  • 13.
    Kar, S.; Hug, G.; Mohammadi, J.; et al. Distributed state estimation and energy management in smart grids: A consensus + innovations approach. IEEE J. Sel. Top. Signal Process., 2014, 8: 1022-1038. doi: 10.1109/JSTSP.2014.2364545
  • 14.
    Zhao, H.Q.; Long, X.Q.; Hou, X.Y.; et al. Simplified set-membership augmented affine projection generalized maximum complex correntropy criterion algorithm. IEEE Trans. Circuits Syst. II: Express Briefs, 2024, 71: 3623-3627. doi: 10.1109/TCSII.2024.3365212
  • 15.
    Song, W.H.; Wang, Z.D.; Li, Z.K.; et al. Maximum correntropy filtering for complex networks with uncertain dynamical bias: Enabling component-wise event-triggered transmission. IEEE Trans. Neural. Netw. Learn. Syst., 2024, 35: 17330-17343. doi: 10.1109/TNNLS.2023.3302190
  • 16.
    Chen, B.D.; Liu, X.; Zhao, H.Q.; et al. Maximum correntropy Kalman filter. Automatica, 2017, 76: 70-77. doi: 10.1016/j.automatica.2016.10.004
  • 17.
    Yin, X.; Zhang, Q.C.; Wang, H.; et al. RBFNN-based minimum entropy filtering for a class of stochastic nonlinear systems. IEEE Trans. Automat. Contr., 2020, 65: 376-381. doi: 10.1109/TAC.2019.2914257
  • 18.
    Feng, Z.Y.; Wang, G.; Peng, B.; et al. Distributed minimum error entropy Kalman filter. Inf. Fusion, 2023, 91: 556-565. doi: 10.1016/j.inffus.2022.11.016
  • 19.
    Dang, L.J.; Chen, B.D.; Xia, Y.L.; et al. Dual extended Kalman filter under minimum error entropy with fiducial points. IEEE Trans. Syst., Man, Cybern.: Syst., 2022, 52: 7588-7599. doi: 10.1109/TSMC.2022.3161412
  • 20.
    Song, H.F.; Ding, D.R.; Shen, B.; et al. Jointly distributed filtering based on generalized maximum correntropy criterion: Memory-based event-triggered cases. IEEE Trans. Industr. Inform., 2023, 19: 10024-10033. doi: 10.1109/TII.2022.3231429
  • 21.
    Chen, B.D.; Xing, L.; Zhao, H.Q.; et al. Effects of outliers on the maximum correntropy estimation: A robustness analysis. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 4007-4012. doi: 10.1109/TSMC.2019.2931403
  • 22.
    Chen, B.D.; Dang, L.J.; Gu, Y.T.; et al. Minimum error entropy Kalman filter. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 5819-5829. doi: 10.1109/TSMC.2019.2957269
  • 23.
    Lin, C.H.; Wu, W.C.; Guo, Y. Decentralized robust state estimation of active distribution grids incorporating microgrids based on PMU measurements. IEEE Trans. Smart Grid, 2020, 11: 810-820. doi: 10.1109/TSG.2019.2937162
  • 24.
    Ao, W.; Song, Y.D.; Wen, C.Y. Distributed secure state estimation and control for CPSs under sensor attacks. IEEE Trans. Cybern., 2020, 50: 259-269. doi: 10.1109/TCYB.2018.2868781
  • 25.
    Wang, W.; Ma, L.F.; Rui, Q.Q.; et al. A survey on privacy-preserving control and filtering of networked control systems. Int. J. Syst. Sci., 2024, 55: 2269-2288. doi: 10.1080/00207721.2024.2343734
  • 26.
    Ma, S.Z.; Wen, G.H.; Luan, M.; et al. Privacy-preserving distributed optimal economic-emission dispatch over directed graphs. IEEE Trans. Circuits Syst. II: Express Briefs, 2024, 71: 3418-3422. doi: 10.1109/TCSII.2024.3361085
  • 27.
    Zhang, L.X.; Zhang, K.; Jiang, H.Y. Attack-free protocols design for leader-following consensus of discrete-time multi-agent systems with multiple input delays. Int. J. Syst. Sci., 2024, 55: 407-425. doi: 10.1080/00207721.2023.2272301
  • 28.
    Zhou, J.Y.; Yang, W.; Ding, W.J.; et al. Watermarking-based protection strategy against stealthy integrity attack on distributed state estimation. IEEE Trans. Automat. Contr., 2023, 68: 628-635. doi: 10.1109/TAC.2022.3171422
  • 29.
    Fan, B.; Wang, X.F. Distributed privacy-preserving active power sharing and frequency regulation in microgrids. IEEE Trans. Smart Grid, 2021, 12: 3665-3668. doi: 10.1109/TSG.2021.3067142
  • 30.
    Riverso, S.; Sarzo, F.; Ferrari-Trecate, G. Plug-and-play voltage and frequency control of islanded microgrids with meshed topology. IEEE Trans. Smart Grid, 2015, 6: 1176-1184. doi: 10.1109/TSG.2014.2381093
  • 31.
    Kennedy, J.M.; Ford, J.J.; Quevedo, D.E.; et al. Innovation-based remote state estimation secrecy with no acknowledgments. IEEE Trans. Automat. Contr., 2024, 69: 7433-7448. doi: 10.1109/TAC.2024.3385315
  • 32.
    Zou, J.Y.; Liu, H.X.; Liu, C.; et al. Optimal privacy-preserving transmission schedule against eavesdropping attacks on remote state estimation. IEEE Control Syst. Lett., 2024, 8: 538-543. doi: 10.1109/LCSYS.2024.3398200
  • 33.
    Das, N.; Bhattacharya, R. Privacy and utility aware data sharing for space situational awareness from ensemble and unscented Kalman filtering perspective. IEEE Trans. Aerosp. Electron. Syst., 2021, 57: 1162-1176. doi: 10.1109/TAES.2020.3038243
  • 34.
    Huang, J.; Gao, C.; He, X. Privacy-preserving state estimation with unreliable channels. ISA Trans., 2022, 127: 4-12. doi: 10.1016/j.isatra.2022.05.035
  • 35.
    Song, Y.; Wang, C.X.; Tay, W.P. Privacy-aware Kalman filtering. In Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, 15–20 April 2018; IEEE: New York, 2018 ; pp. 4434–4438. doi: 10.1109/ICASSP.2018.8462600.
  • 36.
    Moradi, A.; Venkategowda, N.K.D.; Talebi, S.P.; et al. Privacy-preserving distributed Kalman filtering. IEEE Trans. Signal Process., 2022, 70: 3074-3089. doi: 10.1109/TSP.2022.3182590
  • 37.
    Chen, W.; Wang, Z.D.; Hu, J.; et al. Differentially private average consensus with logarithmic dynamic encoding-decoding scheme. IEEE Trans. Cybern., 2023, 53: 6725-6736. doi: 10.1109/TCYB.2022.3233296
  • 38.
    Chen, W.; Liu, G.P. Privacy-preserving consensus-based distributed economic dispatch of smart grids via state decomposition. IEEE/CAA J. Autom. Sin., 2024, 11: 1250-1261. doi: 10.1109/JAS.2023.124122
  • 39.
    An, W.J.; Ding, D.R.; Dong, H.L.; et al. Privacy-preserving distributed optimization for economic dispatch over balanced directed networks. IEEE Trans. Inf. Forensics Secur., 2025, 20: 1362-1373. doi: 10.1109/TIFS.2024.3438129
  • 40.
    Sun, L.; Ding, D.R.; Dong, H.L.; et al. Distributed economic dispatch of microgrids based on ADMM algorithms with encryption-decryption rules. IEEE Trans. Autom. Sci. Eng. 2025 , in press. doi: 10.1109/TASE.2024.3485922.
Share this article:
How to Cite
Liang, Y.; Chen, Y.; Pan, D.; Song, H. Privacy-Preserving Distributed Entropy Filtering for Microgrids With Innovation Decomposition. International Journal of Network Dynamics and Intelligence 2025, 4 (1), 100004. https://doi.org/10.53941/ijndi.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.