2504000064
  • Open Access
  • Article
Torus-Event-Based Sliding Mode Control for Networked Interval Type-2 Fuzzy Systems Under Deception Attacks
  • Xingwang Liu 1,   
  • Zhi Ling 2, *,   
  • Yang Zhang 2

Received: 21 Nov 2023 | Accepted: 29 Jun 2024 | Published: 25 Mar 2025

Abstract

In this paper, the security control problem is investigated for the discrete networked interval type-2 (IT2) fuzzy system under limited communication resources. A torus-event-triggering protocol is developed via two thresholds to regulate the transmission of data, ensuring avoiding the transmission of abnormal data. The deception attacks considered are assumed to have the ability of injecting false information into the data transmitted between sensor and controller. By constructing the new membership functions, a security sliding mode controller is proposed and the theoretical analysis proves that the stochastic stability of the closed-loop system and the reachability of the prescribed sliding surface can be guaranteed. Finally, an illustrative numerical example is proposed to demonstrate the effectiveness of the proposed control strategy.

References 

  • 1.
    Zadeh, L. A. Fuzzy sets. Inf. Control, 1965, 8: 338−353. doi: 10.1016/S0019-9958(65)90241-X
  • 2.
    Bellman, R. E.; Zadeh, L. A. Decision-making in a fuzzy environment. Manage. Sci., 1970, 17: 141−164. doi: 10.1287/mnsc.17.4.B141
  • 3.
    Russo, F. Fuzzy systems in instrumentation: Fuzzy signal processing. IEEE Trans. Instrum. Meas., 1996, 45: 683−689. doi: 10.1109/19.492809
  • 4.
    Pedrycz, W. Fuzzy sets in pattern recognition: Methodology and methods. Pattern Recognit., 1990, 23: 121−146. doi: 10.1016/0031-3203(90)90054-O
  • 5.
    Pedrycz, W. Fuzzy Control and Fuzzy Systems, 2nd ed.; Research Studies Press Ltd: Taunton, 1993.
  • 6.
    Fantuzzi, C.; Rovatti, R. On the approximation capabilities of the homogeneous Takagi-Sugeno model. In Proceedings of IEEE 5th International Fuzzy Systems, New Orleans, LA, USA, 11 September 1996; IEEE: New York, 1996; pp. 1067–1072. doi: 10.1109/FUZZY.1996.552326
  • 7.
    Zeng, K.; Zhang, N. Y.; Xu, W. L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators. IEEE Trans. Fuzzy Syst., 2000, 8: 773−780. doi: 10.1109/91.890337
  • 8.
    Sheng, L.; Ma, X. Y. Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int. J. Syst. Sci., 2014, 45: 977−993. doi: 10.1080/00207721.2012.743056
  • 9.
    Lam, H. K.; Li, H. Y.; Deters, C.; et al. Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron., 2014, 61: 956−968. doi: 10.1109/TIE.2013.2253064
  • 10.
    Pan, Y. N.; Li, H. Y.; Zhou, Q. Fault detection for interval type-2 fuzzy systems with sensor nonlinearities. Neurocomputing, 2014, 145: 488−494. doi: 10.1016/j.neucom.2014.05.005
  • 11.
    Lam, H. K.; Seneviratne, L. D. Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. B Cybern., 2008, 38: 617−628. doi: 10.1109/TSMCB.2008.915530
  • 12.
    Li, H. Y.; Wu, C. W.; Shi, P.; et al. Control of nonlinear networked systems with packet dropouts: Interval type-2 fuzzy model-based approach. IEEE Trans. Cybern., 2015, 45: 2378−2389. doi: 10.1109/TCYB.2014.2371814
  • 13.
    Xiao, B.; Lam, H. K.; Zhong, Z. X.; et al. Membership-function-dependent stabilization of event-triggered interval type-2 polynomial fuzzy-model-based networked control systems. IEEE Trans. Fuzzy Syst., 2020, 28: 3171−3180. doi: 10.1109/TFUZZ.2019.2957256
  • 14.
    Zhao, T.; Xiao, J.; Han, L.; et al. Static output feedback control for interval type-2 T-S fuzzy systems based on fuzzy Lyapunov functions. Asian J. Control, 2014, 16: 1702−1712. doi: 10.1002/asjc.850
  • 15.
    Zhang, Z. N.; Niu, Y. G.; Chen, B. Static output feedback sliding mode control under rice fading channel: An interval type-2 fuzzy modelling method. IET Control Theory Appl., 2020, 14: 3230−3239. doi: 10.1049/iet-cta.2020.0878
  • 16.
    Yang, Y. K.; Niu, Y. G.; Lam, H. K. Sliding-mode control for interval type-2 fuzzy systems: Event-triggering WTOD scheme. IEEE Trans. Cybern., 2023, 53: 3771−3781. doi: 10.1109/TCYB.2022.3163452
  • 17.
    Li, H. Y.; Wang, J. H.; Lam, H. K.; et al. Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst., 2016, 46: 1654−1663. doi: 10.1109/TSMC.2016.2531676
  • 18.
    Zhang, Z. N.; Niu, Y. G.; Cao, Z. R.; et al. Security sliding mode control of interval type-2 fuzzy systems subject to cyber attacks: The stochastic communication protocol case. IEEE Trans. Fuzzy Syst., 2021, 29: 240−251. doi: 10.1109/TFUZZ.2020.2972785
  • 19.
    Ti, B. Z.; Li, G. Y.; Zhou, M.; et al. Resilience assessment and improvement for cyber-physical power systems under typhoon disasters. IEEE Trans. Smart Grid, 2022, 13: 783−794. doi: 10.1109/TSG.2021.3114512
  • 20.
    Wang, X.; Han, S. S.; Yang, L. Y.; et al. Parallel internet of vehicles: ACP-based system architecture and behavioral modeling. IEEE Internet Things J., 2020, 7: 3735−3746. doi: 10.1109/JIOT.2020.2969693
  • 21.
    Yao, F.; Ding, Y. L.; Hong, S. G.; et al. A survey on evolved LoRa-based communication technologies for emerging internet of things applications. Int. J. Network Dyn. Intell., 2022, 1: 4−19. doi: 10.53941/ijndi0101002
  • 22.
    Bao, G. Y.; Ma, L. F.; Yi, X. J. Recent advances on cooperative control of heterogeneous multi-agent systems subject to constraints: A survey. Syst. Sci. Control Eng., 2022, 10: 539−551. doi: 10.1080/21642583.2022.2074169
  • 23.
    Wen, P. Y.; Li, X. R.; Hou, N.; et al. Distributed recursive fault estimation with binary encoding schemes over sensor networks. Syst. Sci. Control Eng., 2022, 10: 417−427. doi: 10.1080/21642583.2022.2063203
  • 24.
    Ding, D. R.; Han, Q. L.; Xiang, Y.; et al. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 2018, 275: 1674−1683. doi: 10.1016/j.neucom.2017.10.009
  • 25.
    Pasqualetti, F.; Dorfler, F.; Bullo, F. Attack detection and identification in cyber-physical systems. IEEE Trans. Automat. Control, 2013, 58: 2715−2729. doi: 10.1109/TAC.2013.2266831
  • 26.
    Mousavinejad, E.; Yang, F. W.; Han, Q. L.; et al. A novel cyber attack detection method in networked control systems. IEEE Trans. Cybern., 2018, 48: 3254−3264. doi: 10.1109/TCYB.2018.2843358
  • 27.
    Pan, Y. N.; Wu, Y. M.; Lam, H. K. Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst., 2022, 30: 4359−4368. doi: 10.1109/TFUZZ.2022.3148875
  • 28.
    Ding, D. R.; Wang, Z. D.; Wei, G. L.; et al. Event-based security control for discrete-time stochastic systems. IET Control Theory Appl., 2016, 10: 1808−1815. doi: 10.1049/iet-cta.2016.0135
  • 29.
    Ding, D. R.; Wang, Z. D.; Han, G. L.; et al. Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Trans. Syst. Man Cybern. Syst., 2018, 48: 779−789. doi: 10.1109/TSMC.2016.2616544
  • 30.
    Zhu, S. X.; Tian, E. G.; Xu, D. H.; et al. An adaptive torus-event-based H ∞ controller design for networked T-S fuzzy systems under deception attacks. Int. J. Robust Nonlinear Control, 2022, 32: 3425−3441. doi: 10.1002/rnc.5957
  • 31.
    Zhang, H. Y.; Zhao, N.; Wang, S. Y.; et al. Improved event-triggered dynamic output feedback control for networked T-S fuzzy systems with actuator failure and deception attacks. IEEE Trans. Cybern., 2023, 53: 7989−7999. doi: 10.1109/TCYB.2023.3264820
  • 32.
    Wang, X. L.; Sun, Y.; Ding, D. R. Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. Int. J. Network Dyn. Intell., 2022, 1: 85−98. doi: 10.53941/ijndi0101008
  • 33.
    Cao, Z. R.; Niu, Y. G.; Karimi, H. R. Dynamic output feedback sliding mode control for Markovian jump systems under stochastic communication protocol and its application. Int. J. Robust Nonlinear Control, 2020, 30: 7307−7325. doi: 10.1002/rnc.5172
  • 34.
    Ding, D. R.; Wang, Z. D.; Han, Q. L.; et al. Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans. Cybern., 2018, 49: 2372−2384. doi: 10.1109/TCYB.2018.2827037
  • 35.
    Zhang, Z. N.; Niu, Y. G.; Lam, H. K. Sliding-mode control of T-S fuzzy systems under weighted try-once-discard protocol. IEEE Trans. Cybern., 2019, 50: 4972−4982. doi: 10.1109/TCYB.2019.2941870
  • 36.
    Qu, F. R.; Zhao, X.; Wang, X. M.; et al. Probabilistic-constrained distributed fusion filtering for a class of time-varying systems over sensor networks: A torus-event-triggering mechanism. Int. J. Syst. Sci., 2022, 53: 1288−1297. doi: 10.1080/00207721.2021.1998721
  • 37.
    An, W. J.; Zhao, P. F.; Liu, H. J.; et al. Distributed multi-step subgradient projection algorithm with adaptive event-triggering protocols: A framework of multiagent systems. Int. J. Syst. Sci., 2022, 53: 2758−2772. doi: 10.1080/00207721.2022.2063967
  • 38.
    Yang, J. J.; Ma, L. F.; Chen, Y. G.; et al. L2-L ∞ state estimation for continuous stochastic delayed neural networks via memory event-triggering strategy. Int. J. Syst. Sci., 2022, 53: 2742−2757. doi: 10.1080/00207721.2022.2055192
  • 39.
    Ju, Y. M.; Wei, G. L.; Ding, D. R.; et al. Finite-horizon fault estimation for time-varying systems with multiple fading measurements under torus-event-based protocols. Int. J. Robust Nonlinear Control, 2019, 29: 4594−4608. doi: 10.1002/rnc.4640
  • 40.
    Costa, O. L. V.; Marques, R. P.; Fragoso, M. D. Discrete-Time Markov Jump Linear Systems; Springer: London, 2005. doi: 10.1007/b138575
Share this article:
How to Cite
Liu, X.; Ling, Z.; Zhang, Y. Torus-Event-Based Sliding Mode Control for Networked Interval Type-2 Fuzzy Systems Under Deception Attacks. International Journal of Network Dynamics and Intelligence 2025, 4 (1), 100003. https://doi.org/10.53941/ijndi.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.