2504000065
  • Open Access
  • Article
Security Coordination Control for the Belt Conveyor Systems with False Data Injection Attacks
  • Lei Ma 1, 2,   
  • Hao Zhang 1, 2,   
  • Guoqing Wang 1, 2,   
  • Chunyu Yang 1, 2, *,   
  • Linna Zhou 1, 2

Received: 30 Jul 2024 | Accepted: 11 Oct 2024 | Published: 25 Mar 2025

Abstract

This paper addresses the issue of security coordination control for belt conveyor systems (BCSs) vulnerable to false data injection (FDI) attacks in an industrial Internet of Things scenario. A networked BCSs drive model is established for the first time consisting of flexibly connected dual permanent magnet synchronous motors. Subsequently, a novel security control strategy based on quadratic regulators is proposed to preserve the drive motor synchronization in response to FDI attacks that compromise the signal interaction from sensors to controllers. Afterward, a composite sub-optimal security coordination controller is presented based on the singular perturbation theory and the corresponding solution approach, recognizing the two-time-scale dynamics inherent to motor systems. The proposed criteria both eliminate ill-conditioned numerical issues and assure system stability. Furthermore, simulations exhibit the advantages and physical experiments confirm the efficiency of the developed algorithms.

References 

  • 1.
    He, D.J.; Pang, Y.S.; Lodewijks, G. Green operations of belt conveyors by means of speed control. Appl. Energy, 2017, 188: 330−341. doi: 10.1016/j.apenergy.2016.12.017
  • 2.
    Mu, Y.F.; Yao, T.A.; Jia, H.J.; et al. Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage. Appl. Energy, 2020, 275: 115368. doi: 10.1016/j.apenergy.2020.115368
  • 3.
    Masaki, M.S.; Zhang, L.J.; Xia, X.H. A design approach for multiple drive belt conveyors minimizing life cycle costs. J. Cleaner Prod., 2018, 201: 526−541. doi: 10.1016/j.jclepro.2018.08.040
  • 4.
    Andrejiova, M.; Grincova, A.; Marasova, D. Measurement and simulation of impact wear damage to industrial conveyor belts. Wear 2016 , 368369, 400–407. doi: 10.1016/j.wear.2016.10.010
  • 5.
    He, D.J.; Pang, Y.S.; Lodewijks, G.; et al. Healthy speed control of belt conveyors on conveying bulk materials. Powder Technol., 2018, 327: 408−419. doi: 10.1016/j.powtec.2018.01.002
  • 6.
    Zhang, X.Y.; Liu, H.Z.; Fu, Y.; et al. Virtual shaft control of DFIG-based wind turbines for power oscillation suppression. IEEE Trans. Sustain. Energy, 2022, 13: 2316−2330. doi: 10.1109/TSTE.2022.3194164
  • 7.
    Chen, C.S.; Chen, L.Y. Robust cross-coupling synchronous control by shaping position commands in multiaxes system. IEEE Trans. Ind. Electron., 2012, 59: 4761−4773. doi: 10.1109/TIE.2011.2182012
  • 8.
    Liang, Z.P.; Hu, S.D.; Li, Z.; et al. Research on master–slave windings motor drive system and control strategy. IEEE Trans. Ind. Electron., 2023, 70: 88−98. doi: 10.1109/TIE.2022.3156171
  • 9.
    Koren, Y. Cross-coupled biaxial computer control for manufacturing systems. J. Dyn. Syst. Meas. Control, 1980, 102: 265−272. doi: 10.1115/1.3149612
  • 10.
    Chen, W.; Wang, D.D.; Geng, Q.; et al. Robust adaptive cross-coupling position control of biaxial motion system. Sci. China Technol. Sci., 2016, 59: 680−688. doi: 10.1007/s11431-015-5988-8
  • 11.
    Zou, S.C.; Zhao, W.Z. Synchronization and stability control of dual-motor intelligent steer-by-wire vehicle. Mech. Syst. Signal Proc., 2020, 145: 106925. doi: 10.1016/j.ymssp.2020.106925
  • 12.
    Zhang, X.M.; Han, Q.L.; Ge, X.H.; et al. Networked control systems: A survey of trends and techniques. IEEE/CAA J. Autom. Sin., 2020, 7: 1−17. doi: 10.1109/JAS.2019.1911651
  • 13.
    Zhang, X.M.; Han, Q.L.; Yu, X.H. Survey on recent advances in networked control systems. IEEE Trans. Ind. Inf., 2016, 12: 1740−1752. doi: 10.1109/TII.2015.2506545
  • 14.
    Lu, A.Y.; Yang, G.H. Distributed secure state estimation for linear systems against malicious agents through sorting and filtering. Automatica, 2023, 151: 110927. doi: 10.1016/j.automatica.2023.110927
  • 15.
    Ma, L.; Chu, Z.; Yang, C.Y.; et al. Recursive watermarking-based transient covert attack detection for the industrial CPS. IEEE Trans. Inf. Forensics Secur., 2023, 18: 1709−1719. doi: 10.1109/TIFS.2023.3251857
  • 16.
    Wang, F.; Wang, Z.D.; Liang, J.L.; et al. Locally minimum-variance filtering of 2-D systems over sensor networks with measurement degradations: A distributed recursive algorithm. IEEE Trans. Cybern., 2022, 52: 996−1008. doi: 10.1109/TCYB.2020.2989207
  • 17.
    Wang, F.; Wang, Z.D.; Liang, J.L.; et al. Recursive locally minimum-variance filtering for two-dimensional systems: When dynamic quantization effect meets random sensor failure. Automatica, 2023, 148: 110762. doi: 10.1016/j.automatica.2022.110762
  • 18.
    Wang, F.; Wang, Z.D.; Liang, J.L.; et al. Recursive state estimation for two-dimensional shift-varying systems with random parameter perturbation and dynamical bias. Automatica, 2020, 112: 108658. doi: 10.1016/j.automatica.2019.108658
  • 19.
    Huang, X.; Dong, J.X. Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks. IEEE Trans. Syst. Man Cybern. Syst., 2020, 50: 89−99. doi: 10.1109/TSMC.2019.2894946
  • 20.
    Wang, J.; Ding, B.C.; Hu, J.C. Security control for LPV system with deception attacks via model predictive control: A dynamic output feedback approach. IEEE Trans. Autom. Control, 2021, 66: 760−767. doi: 10.1109/tac.2020.2984221
  • 21.
    Wu, C.W.; Yao, W.R.; Pan, W.; et al. Secure control for cyber-physical systems under malicious attacks. IEEE Trans. Control Network Syst., 2022, 9: 775−788. doi: 10.1109/TCNS.2021.3094782
  • 22.
    Zhao, J.G.; Yang, C.Y.; Gao, W.N. Reinforcement learning based optimal control of linear singularly perturbed systems. IEEE Trans. Circuits Syst. II Express Briefs, 2022, 69: 1362−1366. doi: 10.1109/TCSII.2021.3105652
  • 23.
    Forni, P.; Angeli, D. Perturbation theory and singular perturbations for input-to-state multistable systems on manifolds. IEEE Trans. Autom. Control, 2019, 64: 3555−3570. doi: 10.1109/TAC.2018.2882165
  • 24.
    Ma, L.; Yang, C.Y.; Wang, G. Q.; et al. H∞ control for a class of two-time-scale cyber–physical systems: An asynchronous dynamic event-triggered protocol. IEEE Trans. Cybern., 2023, 53: 5013−5023. doi: 10.1109/TCYB.2022.3159370
  • 25.
    Yang, C.Y.; Meng, F.Y.; Zhang, H.J.; et al. Optimal coordinated control for speed tracking and torque synchronization of rigidly connected dual-motor systems. IEEE/ASME Trans. Mechatron., 2023, 28: 2609−2620. doi: 10.1109/TMECH.2023.3242663
  • 26.
    Kommuri, S.K.; Park, Y.; Lee, S.B. Online compensation of mechanical load defects with composite control in PMSM drives. IEEE/ASME Trans. Mechatron., 2021, 26: 1392−1400. doi: 10.1109/TMECH.2020.3019507
  • 27.
    Lewis, F.L.; Vrabie, D.; Syrmos, V.L. Optimal Control, 3rd ed.; John Wiley& Sons: Hoboken, 2012.
  • 28.
    Kokotović, P.; Khalil, H.K.; O’reilly, J. Singular Perturbation Methods in Control: Analysis and Design; SIAM: Philadelphia, 1999.
Share this article:
How to Cite
Ma, L.; Zhang, H.; Wang, G.; Yang, C.; Zhou, L. Security Coordination Control for the Belt Conveyor Systems with False Data Injection Attacks. International Journal of Network Dynamics and Intelligence 2025, 4 (1), 100001. https://doi.org/10.53941/ijndi.2025.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.