- 1.
Zhao, H.S.; Shi, J.P.; Qi, X.J.;
et al. Pyramid scene parsing network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York,
2017 ; pp. 6230–6239. doi:
10.1109/CVPR.2017.660 - 2.
Yu, N.X.; Yang, R.; Huang, M.J. Deep common spatial pattern based motor imagery classification with improved objective function. Int. J. Netw. Dyn. Intell., 2022, 1: 73−84. doi:
10.53941/ijndi0101007 - 3.
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern., 1979, 9: 62−66. doi:
10.1109/TSMC.1979.4310076 - 4.
Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24: 603−619. doi:
10.1109/34.1000236 - 5.
Achanta, R.; Shaji, A.; Smith, K.; et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34: 2274−2282. doi:
10.1109/TPAMI.2012.120 - 6.
Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut”: Interactive foreground extraction using iterated graph cuts.
ACM Trans. Graphics (
TOG)
2004 ,
23, 309–314. doi:
10.1145/1015706.1015720 - 7.
Li, M.C.; Wang, Z.D.; Li, K.L.; et al. Task allocation on layered multiagent systems: When evolutionary many-objective optimization meets deep Q-learning. IEEE Trans. Evol. Comput., 2021, 25: 842−855. doi:
10.1109/TEVC.2021.3049131 - 8.
Liu, W.B.; Wang, Z.D.; Zeng, N.Y.; et al. A novel randomised particle swarm optimizer. Int. J. Mach. Learn. Cybern., 2021, 12: 529−540. doi:
10.1007/s13042-020-01186-4 - 9.
Alicja, K.; Maciej, S. Can AI see bias in X-ray images. Int. J. Netw. Dyn. Intell., 2022, 1: 48−64. doi:
10.53941/ijndi0101005 - 10.
Zhao, G.Y.; Li, Y.T.; Xu, Q.R. From emotion AI to cognitive AI. Int. J. Netw. Dyn. Intell., 2022, 1: 65−72. doi:
10.53941/ijndi0101006 - 11.
Xu, X.; Zhang, J.R.; Li, Y.J.; et al. Adversarial attack against urban scene segmentation for autonomous vehicles. IEEE Trans. Ind. Inf., 2021, 17: 4117−4126. doi:
10.1109/TII.2020.3024643 - 12.
Li, X.; Duan, H.B.; Mo, H.;
et al. A novel visual perception framework for unmanned aerial vehicles: Challenges and approaches. In
Proceedings of 2021 China Automation Congress (
CAC),
Beijing, China, 22–24 October 2021; IEEE: New York, 2021; pp. 8359–8363. doi:
10.1109/CAC53003.2021.9727934 - 13.
Ahmed, I.; Din, S.; Jeon, G.; et al. Towards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning. IEEE/CAA J. Autom. Sinica, 2021, 8: 1253−1270. doi:
10.1109/JAS.2020.1003453 - 14.
Dong, G.S.; Yan, Y.; Shen, C.H.; et al. Real-time high-performance semantic image segmentation of urban street scenes. IEEE Trans. Intell. Transp. Syst., 2021, 22: 3258−3274. doi:
10.1109/TITS.2020.2980426 - 15.
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 07–12 June 2015; IEEE: New York, 2015; pp. 3431–3440. doi:
10.1109/CVPR.2015.7298965 - 16.
Chen, L.C.; Papandreou, G.; Kokkinos, I.; et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell., 2018, 40: 834−848. doi:
10.1109/TPAMI.2017.2699184 - 17.
Fu, J.; Liu, J.; Tian, H.J.;
et al. Dual attention network for scene segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 3141–3149. doi:
10.1109/CVPR.2019.00326 - 18.
Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al. Real-time sensing and fault diagnosis for transmission lines. Int. J. Netw. Dyn. Intell., 2022, 1: 36−47. doi:
10.53941/ijndi0101004 - 19.
Paszke, A.; Chaurasia, A.; Kim, S.; et al. ENet: A deep neural network architecture for real-time semantic segmentation. arXiv: 1606.02147, 2016
- 20.
Romera, E.; Alvarez, J.M.; Bergasa, L.M.; et al. ERFNet: Efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst., 2018, 19: 263−272. doi:
10.1109/tits.2017.2750080 - 21.
Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39: 2481−2495. doi:
10.1109/TPAMI.2016.2644615 - 22.
Lian, X.H.; Pang, Y.W.; Han, J.G.; et al. Cascaded hierarchical atrous spatial pyramid pooling module for semantic segmentation. Pattern Recognit., 2021, 110: 107622. doi:
10.1016/j.patcog.2020.107622 - 23.
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York,
2017 ; pp. 1800–1807. doi:
10.1109/CVPR.2017.195 - 24.
Howard, A.G.; Zhu, M.L.; Chen, B.; et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017
- 25.
Zhao, H.S.; Qi, X.J.; Shen, X.Y.;
et al. ICNet for real-time semantic segmentation on high-resolution images. In
Proceedings of the 15th European Conference on Computer Vision (
ECCV),
Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, 2018; pp. 418–434. doi:
10.1007/978-3-030-01219-9_25 - 26.
Mehta, S.; Rastegari, M.; Caspi, A.;
et al. ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In
Proceedings of the 15th European Conference on Computer Vision (
ECCV),
Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, 2018; pp. 561–580. doi:
10.1007/978-3-030-01249-6_34 - 27.
Yu, C.Q.; Wang, J.B.; Peng, C.;
et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation. In
Proceedings of the 15th European Conference on Computer Vision (
ECCV),
Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, 2018; pp. 334–349. doi:
10.1007/978-3-030-01261-8_20 - 28.
Szegedy, C.; Liu, W.; Jia, Y.Q.;
et al. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: New York, 2015; pp. 1–9. doi:
10.1109/CVPR.2015.7298594 - 29.
Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015
- 30.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.;
et al. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, 2016; pp. 2818–2826. doi:
10.1109/CVPR.2016.308 - 31.
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 4–9 February 2017; AAAI Press: Washington, DC, USA, 2017; pp. 4278–4284
- 32.
Lo, S.Y.; Hang, H.M.; Chan, S.W.;
et al. Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In
Proceedings of the 1st ACM International Conference on Multimedia in Asia, Beijing, China, 15–18 December 2019; ACM: New York, 2019; p. 1. doi:
10.1145/3338533.3366558 - 33.
Li, G.; Yun, I.; Kim, J.; et al. DABNet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv: 1907.11357, 2019
- 34.
Wang, Y.; Zhou, Q.; Liu, J.;
et al. Lednet: A lightweight encoder-decoder network for real-time semantic segmentation. In
Proceedings of 2019 IEEE International Conference on Image Processing (
ICIP),
Taipei, China, 22–25 September 2019; IEEE: New York, 2019; pp. 1860–1864. doi:
10.1109/ICIP.2019.8803154 - 35.
Huang, Z.L.; Wang, X.G.; Huang, L.C.;
et al. CCNet: Criss-cross attention for semantic segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (
South),
27 October 2019–2 November 2019; IEEE: New York, 2019; pp. 603–612. doi:
10.1109/ICCV.2019.00069 - 36.
Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, 2018; pp. 7132–7141. doi:
10.1109/CVPR.2018.00745 - 37.
Woo, S.; Park, J.; Lee, J.Y.;
et al. CBAM: Convolutional block attention module. In
Proceedings of the 15th European Conference on Computer Vision (
ECCV),
Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, 2018; pp. 3–19. doi:
10.1007/978-3-030-01234-2_1 - 38.
Wang, Q.L.; Wu, B.G.; Zhu, P.F.;
et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. In
Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR),
Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 11531–11539. doi:
10.1109/CVPR42600.2020.01155 - 39.
Wang, P.Q.; Chen, P.F.; Yuan, Y.;
et al. Understanding convolution for semantic segmentation. In
Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (
WACV),
Lake Tahoe, NV, USA, 12–15 March 2018; IEEE: New York, 2018; pp. 1451–1460. doi:
10.1109/WACV.2018.00163 - 40.
Wu, H.S.; Liang, C.X.; Liu, M.S.; et al. Optimized HRNet for image semantic segmentation. Expert Syst. Appl., 2021, 174: 114532. doi:
10.1016/j.eswa.2020.114532 - 41.
Gao, G.W.; Xu, G.A.; Yu, Y.; et al. MSCFNet: A lightweight network with multi-scale context fusion for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst., 2021, 23: 25489−25499. doi:
10.1109/TITS.2021.3098355 - 42.
Wu, T.Y.; Tang, S.; Zhang, R.; et al. CGNet: A light-weight context guided network for semantic segmentation. IEEE Trans. Image Process., 2021, 30: 1169−1179. doi:
10.1109/TIP.2020.3042065 - 43.
Zhang, X.T.; Chen, Z.X.; Wu, Q.M.J.; et al. Fast semantic segmentation for scene perception. IEEE Trans. Ind. Inf., 2019, 15: 1183−1192. doi:
10.1109/TII.2018.2849348 - 44.
Yang, Z.G.; Yu, H.S.; Fu, Q.; et al. NDNet: Narrow while deep network for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst., 2021, 22: 5508−5519. doi:
10.1109/TITS.2020.2987816 - 45.
Poudel, R.P.K.; Bonde, U.; Liwicki, S.; et al. ContextNet: Exploring context and detail for semantic segmentation in real-time. In Proceedings of the British Machine Vision Conference 2018, Newcastle, UK, 3–6 September 2018; BMVA: Durham, UK, 2018
- 46.
Wang, J.W.; Xiong, H.Y.; Wang, H.B.; et al. ADSCNet: Asymmetric depthwise separable convolution for semantic segmentation in real-time. Appl. Intell., 2020, 50: 1045−1056. doi:
10.1007/s10489-019-01587-1 - 47.
Ye, L.; Zeng, J.X.; Yang, Y.; et al. BSDNet: Balanced sample distribution network for real-time semantic segmentation of road scenes. IEEE Access, 2021, 9: 84034−84044. doi:
10.1109/ACCESS.2021.3087510 - 48.
Kim, M.; Park, B.; Chi, S. Accelerator-aware fast spatial feature network for real-time semantic segmentation. IEEE Access, 2020, 8: 226524−226537. doi:
10.1109/ACCESS.2020.3045147 - 49.
Wang, W.F.; Fu, Y.J.; Pan, Z.J.; et al. Real-time driving scene semantic segmentation. IEEE Access, 2020, 8: 36776−36788. doi:
10.1109/ACCESS.2020.2975640 - 50.
Zhou, Q.; Wang, Y.; Fan, Y.W.; et al. AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network. Appl. Soft Comput., 2020, 96: 106682. doi:
10.1016/j.asoc.2020.106682 - 51.
Zhang, Z.P.; Zhang, K.P. FarSee-Net: Real-time semantic segmentation by efficient multi-scale context aggregation and feature space super-resolution. In
Proceedings of 2020 IEEE International Conference on Robotics and Automation (
ICRA),
Paris, France, 31 May 2020–31 August 2020; IEEE: New York, 2020; pp. 8411–8417. doi:
10.1109/ICRA40945.2020.9196599 - 52.
Li, H.C.; Xiong, P.F.; Fan, H.Q.;
et al. DFANet: Deep feature aggregation for real-time semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 9514–9523. doi:
10.1109/CVPR.2019.00975 - 53.
Han, H.Y.; Chen, Y.C.; Hsiao, P.Y.; et al. Using channel-wise attention for deep CNN based real-time semantic segmentation with class-aware edge information. IEEE Trans. Intell. Transp. Syst., 2021, 22: 1041−1051. doi:
10.1109/TITS.2019.2962094 - 54.
Li, G.; Jiang, S.L.; Yun, I.; et al. Depth-wise asymmetric bottleneck with point-wise aggregation decoder for real-time semantic segmentation in urban scenes. IEEE Access, 2020, 8: 27495−27506. doi:
10.1109/ACCESS.2020.2971760 - 55.
Hu, X.G.; Wang, H.B. Efficient fast semantic segmentation using continuous shuffle dilated convolutions. IEEE Access, 2020, 8: 70913−70924. doi:
10.1109/ACCESS.2020.2987080 - 56.
Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016; ICLR: San Juan, Puerto Rico, 2016