- 1.
Mikolov, T.; Chen, K.; Corrado, G.; et al. Efficient estimation of word representations in vector space. In Proceedings of the 1st International Conference on Learning Representations, Scottsdale, AZ, USA, 2–4 May 2013; ICLR, 2013.
- 2.
Pennington, J.; Socher, R.; Manning, C. GloVe: Global vectors for word representation. In
Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics, 2014; pp. 1532–1543. doi:
10.3115/v1/D14-1162 - 3.
Peters, M.E.; Neumann, M.; Iyyer, M.;
et al. Deep contextualized word representations. In
Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–
6 June 2018; Association for Computational Linguistics, 2018; pp. 2227–2237. doi:
10.18653/v1/N18-1202 - 4.
Devlin, J.; Chang, M.W.; Lee, K.;
et al. BERT: Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, 2–
7 June 2019; Association for Computational Linguistics, 2019; pp. 4171–4186. doi:
10.18653/v1/N19-1423 - 5.
- 6.
- 7.
Brown, T.B.; Mann, B.; Ryder, N.;
et al. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing Systems, New York, 6 December 2020; ACM: Vancouver, 2020; p. 159. doi:
10.5555/3495724.3495883 - 8.
Ranjan, S.; Mishra, S. Perceiving university students’ opinions from Google app reviews. Concurr. Comput. Pract. Exp., 2022, 34: e6800. doi:
10.1002/cpe.6800 - 9.
Mahalakshmi, P.; Fatima, N.S.; Balaji, R.; et al. An effective multilingual retrieval with query optimization using deep learning technique. Adv. Eng. Softw., 2022, 173: 103244. doi:
10.1016/j.advengsoft.2022.103244 - 10.
Chen, X.Y.; Zhang, M.; Xiong, S.W.; et al. On the form of parsed sentences for relation extraction. Knowl.-Based Syst., 2022, 251: 109184. doi:
10.1016/j.knosys.2022.109184 - 11.
Brants, T. Part-of-speech tagging. In Encyclopedia of Language & Linguistics, 2nd ed.; Brown, K., Ed.; Elsevier: Oxford, 2006; pp. 221–230.
- 12.
Sang, E.F.T.K.; Buchholz, S. Introduction to the CoNLL-2000 shared task chunking. In Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal; Association for Computational Linguistics, 2000; pp. 127–132.
- 13.
Ling, W.; Dyer, C.; Black, A.W.;
et al. Two/too simple adaptations of Word2Vec for syntax problems. In
Proceedings of 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31 May–5 June 2015; Association for Computational Linguistics, 2015; pp. 1299–1304. doi:
10.3115/v1/N15-1142 - 14.
Ling, W.; Tsvetkov, Y.; Amir, S.;
et al. Not all contexts are created equal: Better word representations with variable attention. In
Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–
21 September 2015; Association for Computational Linguistics, 2015; pp. 1367–1372. doi:
10.18653/v1/D15-1161 - 15.
Song, Y.; Shi, S.M.; Li, J.;
et al. Directional skip-gram: Explicitly distinguishing left and right context for word embeddings. In
Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics, 2018, pp. 175–180. doi:
10.18653/v1/N18-2028 - 16.
Chelba, C.; Mikolov, T.; Schuster, M.; et al. One billion word benchmark for measuring progress in statistical language modeling. In Proceedings of the 15th Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014; ISCA: Singapore, 2014.
- 17.
Yang, J.; Zhang, Y. NCRF++: An open-source neural sequence labeling toolkit. In
Proceedings of ACL 2018, System Demonstrations, Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics, 2018; pp. 74–79. doi:
10.18653/v1/P18-4013 - 18.
Gimpel, K.; Schneider, N.; O’Connor, B.; et al. Part-of-speech tagging for twitter: Annotation, features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011; Association for Computational Linguistics, 2011; 42–47.