- 1.
Emani, C.K.; Cullot, N.; Nicolle, C. Understandable big data: A survey. Comput. Sci. Rev., 2015, 17: 70−81.
- 2.
Muthukrishnan, S. Data streams: Algorithms and applications. Found. Trends Theor. Comput. Sci., 2005, 1: 117−236.
- 3.
Gepperth, A.; Hammer, B. Incremental learning algorithms and applications. In 24th European Symposium on Artificial Neural Networks, Bruges, Belgium, 27–29 April 2016; ESANN, 2016.
- 4.
Fisher, D.H. Knowledge acquisition via incremental conceptual clustering. Mach. Learn., 1987, 2: 139−172.
- 5.
Langley, P. Order effects in incremental learning. Learning in Humans and Machines: Towards an Interdisciplinary Learning Science. Pergamon, 1995, 136, 137.
- 6.
Domingos, P.; Hulten, G. Mining high-speed data streams. In Proceedings of the ACM Sixth International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, 1 August 2000; ACM: New York, 2000; pp. 71–80. doi:10.1145/347090.347107
- 7.
Gama, J.; Medas, P. Learning decision trees from dynamic data streams. J. Univ. Comput. Sci., 2005, 11: 1353−1366.
- 8.
Rutkowski, L.; Jaworski, M.; Pietruczuk, L.; et al. The CART decision tree for mining data streams. Inf. Sci., 2014, 266: 1−15.
- 9.
Wang, S.; Minku, L.L.; Yao, X. Resampling-based ensemble methods for online class imbalance learning. IEEE Trans. Knowl. Data Eng., 2015, 27: 1356−1368.
- 10.
Yavtukhovskyi, V.; Abukhader, R.; Tillaeus, N.; et al. An incremental fuzzy learning approach for online classification of data streams. In Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020), India, 15–18 December 2020; Springer: Cham, 2021; pp. 583–592. doi:10.1007/978-3-030-73689-7_56
- 11.
Lemos, A.; Caminhas, W.; Gomide, F. Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inf. Sci., 2013, 220: 64−85.
- 12.
Lughofer, E.; Buchtala, O. Reliable all-pairs evolving fuzzy classifiers. IEEE Trans. Fuzzy Syst., 2013, 21: 625−641.
- 13.
Lughofer, E.; Weigl, E.; Heidl, W.; et al. Integrating new classes on the fly in evolving fuzzy classifier designs and their application in visual inspection. Appl. Soft Comput., 2015, 35: 558−582.
- 14.
Lughofer, E. Evolving multi-user fuzzy classifier systems integrating human uncertainty and expert knowledge. Inf. Sci., 2022, 596: 30−52.
- 15.
Lughofer, E. Evolving fuzzy and neuro-fuzzy systems: Fundamentals, stability, explainability, useability, and applications. In Handbook on Computer Learning and Intelligence; Angelov, P.P., Ed.; World Scientific: Singapore, 2022; pp. 133–234.
- 16.
Gámez, J.C.; García, D.; González, A.; et al. On the use of an incremental approach to learn fuzzy classification rules for big data problems. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; IEEE: New York, 2016; pp. 1413–1420. doi:10.1109/FUZZ-IEEE.2016.7737855
- 17.
Romero-Zaliz, R.; González, A.; Pérez, R. Incremental fuzzy learning algorithms in big data problems: A study on the size of learning subsets. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017; IEEE: New York, 2017; pp. 1–6. doi:10.1109/FUZZ-IEEE.2017.8015671
- 18.
Duda, P.; Jaworski, M.; Cader, A.; et al. On training deep neural networks using a streaming approach. J. Artif. Intell. Soft Comput. Res., 2020, 10: 15−26.
- 19.
Hoi, S.C.H.; Sahoo, D.; Lu, J.; et al. Online learning: A comprehensive survey. Neurocomputing, 2021, 459: 249−289.
- 20.
Read, J.; Bifet, A.; Pfahringer, B.; et al. Batch-incremental versus instance-incremental learning in dynamic and evolving data. In 11th International Symposium on Advances in Intelligent Data Analysis XI, Helsinki, Finland, 25–27 October 2012; Springer: Berlin, 2012; pp. 313–323. doi:10.1007/978-3-642-34156-4_29
- 21.
Žliobaitė, I.; Pechenizkiy, M.; Gama, J. An overview of concept drift applications. In Big Data Analysis: New Algorithms for A New Society; Japkowicz, N.; Stefanowski, J., Eds.; Springer: Cham, 2016; pp. 91–114. doi:10.1007/978-3-319-26989-4_4
- 22.
Zhang H. The optimality of naive Bayes. In Proceedings of the 17th International FLAIRS Conference, American Association for Artificial Intelligence, Miami Beach, FL, USA; AAAI Press: Palo Alto, 2004; pp. 562−567.
- 23.
Ramasesh, V.V.; Lewkowycz, A.; Dyer, E. Effect of scale on catastrophic forgetting in neural networks. In The 10th International Conference on Learning Representations, 25–29 April 2022; ICLR, 2022.
- 24.
- 25.
Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. In Encyclopedia of Database Systems; Liu, L.; Özsu, M.T., Eds.; Springer: New York, 2009; pp. 1–7. doi:10.1007/978-1-4899-7993-3_565-2