2504000478
  • Open Access
  • Article
Centralized Fusion Estimation in Networked Systems: Addressing Deception Attacks and Packet Dropouts with a Zero-Order Hold Approach
  • Raquel Caballero-Águila 1, *,   
  • Josefa Linares-Pérez 2

Received: 26 Aug 2024 | Accepted: 11 Oct 2024 | Published: 24 Dec 2024

Abstract

This paper addresses the centralized fusion estimation problem in networked systems with stochastic uncertainties characterized by random parameter matrices together with multiplicative and additive noises. To reflect real-world engineering situations, it is further assumed that the network transmissions are simultaneously subject to random packet dropouts and deception attacks which randomly alter real measurements by replacing them with noises. A novel approach is proposed that avoids the need for a specific state equation, relying instead only on the mean and covariance functions of the processes involved. The additive noises in the sensor measurements are considered to be time-correlated and packet dropouts are managed through a zero-order hold compensation strategy that attenuates the effect of data loss on the estimation process. On the basis of the available measurement information, recursive fusion filtering and smoothing algorithms are developed using an innovation-based methodology. The proposed approach is validated by numerical simulations, demonstrating its feasibility and correctness. Comparative results show the superior performance of the proposed fusion estimation scheme over existing filters in the literature, highlighting its effectiveness in mitigating the impact of deception attacks and packet dropouts in networked systems.

References 

  • 1.
    Lu, Z.B.; Rao, W.M.; Wu, Y.J.; et al. A Kalman filter approach to dynamic OD flow estimation for urban road networks using multi-sensor data. J. Adv. Transp., 2015, 49: 210−227. doi: 10.1002/atr.1292
  • 2.
    Zhang, D. Interoperability technology of sports health monitoring equipment based on multi-sensor information fusion. EURASIP J. Adv. Signal Process., 2021, 2021: 62. doi: 10.1186/s13634-021-00775-x
  • 3.
    Azizi, S.; Rabiee, R.; Nair, G.; et al. Effects of positioning of multi-sensor devices on occupancy and indoor environmental monitoring in single-occupant offices. Energies, 2021, 14: 6296. doi: 10.3390/en14196296
  • 4.
    Sun, J.; Shen, B.; Liu, Y.; et al. Dynamic event-triggered state estimation for time-delayed spatial-temporal networks under encoding-decoding scheme. Neurocomputing, 2022, 500: 868−876. doi: 10.1016/j.neucom.2022.05.062
  • 5.
    Caballero-Águila, R.; Linares-Pérez, J. Distributed fusion filtering for uncertain systems with coupled noises, random delays and packet loss prediction compensation. Int. J. Syst. Sci., 2023, 54: 371−390. doi: 10.1080/00207721.2022.2122905
  • 6.
    Zhou, H.; Sun, S.L. Distributed filtering for multi-sensor networked systems with stochastic communication protocol and correlated noises. Inf. Fusion, 2024, 104: 102121. doi: 10.1016/j.inffus.2023.102121
  • 7.
    Hu, Z.B.; Hu, J.; Yang, G. A survey on distributed filtering, estimation and fusion for nonlinear systems with communication constraints: New advances and prospects. Syst. Sci. Control Eng., 2020, 8: 189−205. doi: 10.1080/21642583.2020.1737846
  • 8.
    He, S.M.; Shin, H.S.; Xu, S.Y.; et al. Distributed estimation over a low-cost sensor network: A review of state-of-the-art. Inf. Fusion, 2020, 54: 21−43. doi: 10.1016/j.inffus.2019.06.026
  • 9.
    Geng, H.; Liu, H.J.; Ma, L.F.; et al. Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances, challenges and prospects. Int. J. Syst. Sci., 2021, 52: 3410−3436. doi: 10.1080/00207721.2021.2005178
  • 10.
    Hu, J.; Jia, C.Q.; Liu, H.J.; et al. A survey on state estimation of complex dynamical networks. Int. J. Syst. Sci., 2021, 52: 3351−3367. doi: 10.1080/00207721.2021.1995528
  • 11.
    Wang, Y.; Liu, H.J.; Tan, H.L. An overview of filtering for sampled-data systems under communication constraints. Int. J. Netw. Dyn. Intell., 2023, 2: 100011. doi: 10.53941/ijndi.2023.100011
  • 12.
    Lin, H.; Lu, S.; Lu, P.; et al. Centralized fusion estimation over wireless sensor-actuator networks with unobservable packet dropouts. J. Franklin Inst., 2022, 359: 1569−1584. doi: 10.1016/j.jfranklin.2021.11.002
  • 13.
    Li, S.; Liu, W.Q.; Tao, G.L. Centralized fusion robust filtering for networked uncertain systems with colored noises, one-step random delay, and packet dropouts. EURASIP J. Adv. Signal Process., 2022, 2022: 24. doi: 10.1186/s13634-022-00857-4
  • 14.
    Feng, X.L.; Wu, C.S.; Ge, Q.B. Cauchy kernel minimum error entropy centralized fusion filter. Signal Process., 2024, 220: 109465. doi: 10.1016/j.sigpro.2024.109465
  • 15.
    Tian, T.; Sun, S.L. Fusion estimation against mixed network attacks for systems with random parameter matrices, correlated noises, and quantized measurements. Digital Signal Process., 2024, 150: 104523. doi: 10.1016/j.dsp.2024.104523
  • 16.
    Shen, Y.X.; Wang, Z.D.; Dong, H.L.; et al. Multi-sensor multi-rate fusion estimation for networked systems: Advances and perspectives. Inf. Fusion, 2022, 82: 19−27. doi: 10.1016/j.inffus.2021.12.005
  • 17.
    Cheng, H.L.; Shen, B.; Sun, J. Distributed fusion filtering for multi-sensor systems under time-correlated fading channels and energy harvesters. J. Franklin Inst., 2023, 360: 6021−6039. doi: 10.1016/j.jfranklin.2023.03.028
  • 18.
    Hu, J.; Hu, Z.B.; Caballero-Águila, R.; et al. Distributed fusion filtering for multi-sensor nonlinear networked systems with multiple fading measurements via stochastic communication protocol. Inf. Fusion, 2024, 112: 102543. doi: 10.1016/j.inffus.2024.102543
  • 19.
    Ding, J.; Sun, S.L.; Ma, J.; et al. Fusion estimation for multi-sensor networked systems with packet loss compensation. Inf. Fusion, 2019, 45: 138−149. doi: 10.1016/j.inffus.2018.01.008
  • 20.
    Wang, M.H.; Sun, S.L. Self-tuning distributed fusion filter for multi-sensor networked systems with unknown packet receiving rates, noise variances, and model parameters. Sensors, 2019, 19: 4436. doi: 10.3390/s19204436
  • 21.
    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing. Signal Process., 2019, 156: 71−83. doi: 10.1016/j.sigpro.2018.10.012
  • 22.
    Sun, S.L. Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises. IEEE Trans. Signal Process., 2020, 68: 1064−1074. doi: 10.1109/TSP.2020.2967180
  • 23.
    Liu, W.; Xie, X.P.; Qian, W.; et al. Optimal linear filtering for networked control systems with random matrices, correlated noises, and packet dropouts. IEEE Access, 2020, 8: 59987−59997. doi: 10.1109/ACCESS.2020.2983122
  • 24.
    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked fusion estimation with multiple uncertainties and time-correlated channel noise. Inf. Fusion, 2020, 54: 161−171. doi: 10.1016/j.inffus.2019.07.008
  • 25.
    Ma, J.; Sun, S.L. Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive noises and packet dropout compensations. Signal Process., 2020, 176: 107704. doi: 10.1016/j.sigpro.2020.107704
  • 26.
    Cheng, G.R.; Ma, M.C.; Tan, L.G.; et al. Gaussian estimation for non-linear stochastic uncertain systems with time-correlated additive noises and packet dropout compensations. IET Control Theory Appl., 2022, 16: 600−614. doi: 10.1049/cth2.12252
  • 27.
    Ma, J.; Liu, S.H.; Zhang, Q. Globally optimal centralized and sequential fusion filters for uncertain systems with time-correlated measurement noises. IEEE Access, 2022, 10: 89011−89021. doi: 10.1109/ACCESS.2022.3201013
  • 28.
    Caballero-Águila, R.; Linares-Pérez, J. Quadratic estimation for stochastic systems in the presence of random parameter matrices, time-correlated additive noise and deception attacks. J. Franklin Inst., 2023, 360: 11141−11164. doi: 10.1016/j.jfranklin.2023.08.033
  • 29.
    Caballero-Águila, R.; García-Ligero, M.J.; Hermoso-Carazo, A.; et al. Unreliable networks with random parameter matrices and time-correlated noises: Distributed estimation under deception attacks. Math. Biosci. Eng., 2023, 20: 14550−14577. doi: 10.3934/mbe.2023651
  • 30.
    Sánchez, H.S.; Rotondo, D.; Escobet, T.; et al. Bibliographical review on cyber attacks from a control oriented perspective. Annu. Rev. Control, 2019, 48: 103−128. doi: 10.1016/j.arcontrol.2019.08.002
  • 31.
    Mahmoud, M.S.; Hamdan, M.M.; Baroudi, U.A. Modeling and control of cyber-physical systems subject to cyber attacks: A survey of recent advances and challenges. Neurocomputing, 2019, 338: 101−115. doi: 10.1016/j.neucom.2019.01.099
  • 32.
    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. A two-phase distributed filtering algorithm for networked uncertain systems with fading measurements under deception attacks. Sensors, 2020, 20: 6445. doi: 10.3390/s20226445
  • 33.
    Xiao, S.Y.; Han, Q.L.; Ge, X.H.; et al. Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybern., 2020, 50: 1220−1229. doi: 10.1109/tcyb.2019.2900478
  • 34.
    Ma, L.F.; Wang, Z.D.; Chen, Y.; et al. Probability-guaranteed distributed secure estimation for nonlinear systems over sensor networks under deception attacks on innovations. IEEE Trans. Signal Inf. Proc. Netw., 2021, 7: 465−477. doi: 10.1109/TSIPN.2021.3097217
  • 35.
    Ma, Y.M.; Sun, S.L. Distributed optimal and self-tuning filters based on compressed data for networked stochastic uncertain systems with deception attacks. Sensors, 2023, 23: 335. doi: 10.3390/s23010335
Share this article:
How to Cite
Caballero-Águila, R.; Linares-Pérez, J. Centralized Fusion Estimation in Networked Systems: Addressing Deception Attacks and Packet Dropouts with a Zero-Order Hold Approach. International Journal of Network Dynamics and Intelligence 2024, 3 (4), 100021. https://doi.org/10.53941/ijndi.2024.100021.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.