2506000825
  • Open Access
  • Article
Multi-Task Network based Health Status Assessment of Cutting Tools
  • Xiaoyu Yin 1,   
  • Xiaohua Li 2,   
  • Yong Zhang 1,   
  • Wei Zhou 1, *,   
  • Zhenxing Liu 1

Received: 05 Mar 2025 | Accepted: 07 Mar 2025 | Published: 27 Jun 2025

Abstract

In modern industrial machining processes, cutting tools play an important role, and their health directly affects the quality of machined parts. However, changing cutting tools based on experience not only increases costs but also reduces productivity. Therefore, predicting the future health of the cutting tools in advance can enable cutting tools changes to be carried out at the right time. The existing health status assessment of a cutting tools consists of three main areas: cutting tools wear prediction, health stages division, and reliability assessment. But traditional deep learning models usually process these three tasks separately, ignoring the correlation that exists between the three tasks. In order to solve this problem, this paper proposes a multi-task model based on temporal convolutional network (TCN) and progressive layered extraction (PLE) network. Firstly, the pre-processed data are subjected to feature extraction and feature selection and the redundant information between the features is reduced by using an autoencoder. Secondly, the TCN network module is used to extract the correlation feature information of multiple tasks in time, the PLE network module learns the difference information between each task, and finally, the prediction output is made by each sub-task module for each sub-task. Finally, the dynamic weight average method is used to adjust the weights of the loss function, which avoids manual adjustment of the weights. The experimental results show that the method not only achieves the prediction of multiple tasks but also has high prediction accuracy.

References 

  • 1.

    Hou, W.; Guo, H.; Luo, L.; et al. Tool wear prediction based on domain adversarial adaptation and channel attention multiscale convolutional long short-term memory network. J. Manuf. Process., 2022, 84: 1339−1361. doi: 10.1016/j.jmapro.2022.11.017

  • 2.

    Guo, H.; Lin, X.; Zhu, K.P. Pyramid LSTM network for tool condition monitoring. IEEE Trans. Instrum. Meas., 2022, 71: 2509511. doi: 10.1109/TIM.2022.3173278

  • 3.

    You, Z.C.; Li, S.C.; Li, C.G.; et al. A novel evaluation metric based on dispersion of wear distance for in situ tool condition monitoring. IEEE Trans. Instrum. Meas., 2023, 72: 3501210. doi: 10.1109/TIM.2022.3224995

  • 4.

    Kuntoğlu, M.; Sağlam, H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement, 2019, 140: 427−436. doi: 10.1016/j.measurement.2019.04.022

  • 5.

    Li, D.Q.; Li, Y.; Liu, C. Gaussian process regression model incorporated with tool wear mechanism. Chin. J. Aeronaut., 2021, 35: 393−400. doi: 10.1016/j.cja.2021.08.009

  • 6.

    Salonitis, K.; Kolios, A. Reliability assessment of cutting tool life based on surrogate approximation methods. Int. J. Adv. Manuf. Technol., 2014, 71: 1197−1208. doi: 10.1007/s00170-013-5560-2

  • 7.

    Zhang, Y.; Xin, Y.Q.; Liu, Z.W.; et al. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab. Eng. Syst. Saf., 2022, 220: 108263. doi: 10.1016/j.ress.2021.108263

  • 8.

    Zhang, Y.; Sun, J.H.; Zhang, J.; et al. Health state assessment of bearing with feature enhancement and prediction error compensation strategy. Mech. Syst. Signal Process., 2023, 182: 109573. doi: 10.1016/j.ymssp.2022.109573

  • 9.

    Wang, G.; Zhang, F. A sequence-to-sequence model with attention and monotonicity loss for tool wear monitoring and prediction. IEEE Trans. Instrum. Meas., 2021, 70: 3525611. doi: 10.1109/TIM.2021.3117082

  • 10.

    Wang, T.; Li, X.; Wang, W.; et al. A spatiotemporal feature learning-based RUL estimation method for predictive maintenance. Measurement, 2023, 214: 112824. doi: 10.1016/j.measurement.2023.112824

  • 11.

    Liu, C.Q.; Li, Y.G.; Li, J.J.; et al. A meta-invariant feature space method for accurate tool wear prediction under cross conditions. IEEE Trans. Industr. Inform., 2022, 18: 922−931. doi: 10.1109/TII.2021.3070109

  • 12.

    Zhou, Y.Q.; Sun, B.T.; Sun, W.F. A tool condition monitoring method based on two-layer angle kernel extreme learning machine and binary differential evolution for milling. Measurement, 2020, 166: 108186. doi: 10.1016/j.measurement.2020.108186

  • 13.

    Qin, Y.Y.; Liu, X.L.; Yue, C.X.; et al. Tool wear identification and prediction method based on stack sparse self-coding network. J. Manuf. Syst., 2023, 68: 72−84. doi: 10.1016/j.jmsy.2023.02.006

  • 14.

    Wei, X.D.; Liu, X.L.; Yue, C.X.; et al. Tool wear state recognition based on feature selection method with whitening variational mode decomposition. Robot. Comput. Integr. Manuf., 2022, 77: 102344. doi: 10.1016/j.rcim.2022.102344

  • 15.

    Liu, X.L.; Liu, S.Y.; Li, X.B.; et al. Intelligent tool wear monitoring based on parallel residual and stacked bidirectional long short-term memory network. J. Manuf. Syst., 2021, 60: 608−619. doi: 10.1016/j.jmsy.2021.06.006

  • 16.

    Ruder, S. An overview of multi-task learning in deep neural networks. arXiv: 1706.05098, 2017. doi: 10.48550/arXiv.1706.05098.

  • 17.

    Wang, Y.Q.; Qin, B.; Liu, K.; et al. A new multitask learning method for tool wear condition and part surface quality prediction. IEEE Trans. Industr. Inform., 2021, 17: 6023−6033. doi: 10.1109/TII.2020.3040285

  • 18.

    Miao, H.H.; Li, B.; Sun, C.; et al. Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks. IEEE Trans. Industr. Inform., 2019, 15: 5023−5032. doi: 10.1109/TII.2019.2900295

  • 19.

    Kim, T.S.; Sohn, S. Y. Multitask learning for health condition identification and remaining useful life prediction: Deep convolutional neural network approach. J. Intell. Manuf., 2021, 32: 2169−2179. doi: 10.1007/s10845-020-01630-w

  • 20.

    Bai, S.J.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv: 1803.01271, 2018. doi: 10.48550/arXiv.1803.01271.

  • 21.

    Tang, H.Y.; Liu, J.N.; Zhao, M.; et al. Progressive layered extraction (PLE): A novel multi-task learning (MTL) model for personalized recommendations. In Proceedings of the 14th ACM Conference on Recommender Systems, 22–26 September 2020; ACM: New York, 2020; pp. 269–278. doi: 10.1145/3383313.3412236

  • 22.

    Liu, S.K.; Johns, E.; Davison, A.J. End-to-end multi-task learning with attention. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2018; pp. 1871–1880. doi: 10.1109/CVPR.2019.00197

  • 23.

    Javed, K.; Gouriveau, R.; Zerhouni, N.; et al. Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Trans. Ind. Electron., 2015, 62: 647−656. doi: 10.1109/TIE.2014.2327917

  • 24.

    Lei, Y.G.; Li, N.P.; Guo, L.; et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process., 2018, 104: 799−834. doi: 10.1016/j.ymssp.2017.11.016

  • 25.

    Chen, B.J.; Chen, X.F.; Li, B.; et al. Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mech. Syst. Signal Process., 2011, 25: 2526−2537. doi: 10.1016/j.ymssp.2011.03.001

  • 26.

    Ma, J.Q.; Zhao, Z.; Yi, X.Y.; et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; ACM: New York, 2018; pp. 1930–1939. doi: 10.1145/3219819.3220007

Share this article:
How to Cite
Yin, X.; Li, X.; Zhang, Y.; Zhou, W.; Liu, Z. Multi-Task Network based Health Status Assessment of Cutting Tools. International Journal of Network Dynamics and Intelligence 2025, 4 (2), 100008. https://doi.org/10.53941/iindi.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.