- 1.
Ebaid, D.B.; Madbouly, M.M.; El-Zoghabi, A.A. Bi-directional image–text matching deep learning-based approaches: Concepts, methodologies, benchmarks and challenges. Int. J. Comput. Intell. Syst., 2023, 16: 81. doi:10.1007/s44196-023-00260-3
- 2.
Zhou, Y.H.; Yan, X.M.; Huang, H.; et al. Legal text retrieval with contrastive representation learning and evolutionary data augmen- tation. In Proceedings of2024 IEEE Congress on Evolutionary Computation (CEC), Yokohama, Japan, 30 June 2024—5 July 2024; IEEE: New York, 2024; pp. 1–7. doi:10.1109/CEC60901.2024.10612052
- 3.
Ren, Z.; Jin, H.L.; Lin, Z.; et al. Joint image-text representation by Gaussian visual-semantic embedding. In Proceedings ofthe 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; ACM: New York, 2016; pp. 207–211. doi:10.1145/2964284.2967212
- 4.
Engilberge, M.; Chevallier, L.; Perez, P.; et al. Finding beans in burgers: Deep semantic-visual embedding with localization. In Pro- ceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, 2018; pp. 3984–3993. doi:10.1109/CVPR.2018.00419
- 5.
Zhen, L.L.; Hu, P.; Wang, X.; et al. Deep supervised cross-modal retrieval. In Proceedings of2019 IEEE/CVF Conference on Com- puter Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; 10386–10395. doi:10.1109/CVPR.2019.01064
- 6.
Yan, X.M.; Xue, H.W.; Jiang, S.Y.; et al. Multimodal sentiment analysis using multi-tensor fusion network with cross-modal model- ing. Appl. Artif. Intell., 2022, 36: 2000688. doi:10.1080/08839514.2021.2000688
- 7.
Lee, K.H.; Chen, X.; Hua, G.; et al. Stacked cross attention for image-text matching. In Proceedings of the 15th European Confer- ence on Computer Vision, Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 201–216. doi:10.1007/978-3-030-01225-__0 13
- 8.
Wang, Y.X.; Yang, H.; Qian, X.M.; et al. Position focused attention network for image-text matching. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10 August 2019; AAAI Press: Palo Alto, CA, USA, 2019; pp. 3792–3798.
- 9.
Wei, X.; Zhang, T.Z.; Li, Y.; et al. Multi-modality cross attention network for image and sentence matching. In Proceedings of2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: New York, NY, USA, 2020; pp. 10938–10947. doi:10.1109/CVPR42600.2020.01095
- 10.
Ji, Z.; Chen, K.X.; Wang, H.R. Step-wise hierarchical alignment network for image-text matching. In Proceedings ofthe 30th Inter- national Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 9–27 August 2021; pp. 765–771. doi:10.24963/ijcai. 2021/106
- 11.
Yan, X.M.; Huang, H.; Jin, Y.C.; et al. Neural architecture search via multi-hashing embedding and graph tensor networks for multi- lingual text classification. IEEE Trans. Emerg. Top. Comput. Intell., 2024, 8: 350–363. doi:10.1109/TETCI.2023.3301774
- 12.
Wang, S.J.; Wang, R.P.; Yao, Z.W.; et al. Cross-modal scene graph matching for relationship-aware image-text retrieval. In Pro- ceedings of 2020 IEEE Winter Conference on Applications of Computer Vision ( WACV), Snowmass, CO, USA, 1–5 March 2020; IEEE: New York, NY, USA, 2020; pp. 1497–1506. doi:10.1109/WACV45572.2020.9093614
- 13.
Nguyen, M.D.; Nguyen, B.T.; Gurrin, C. A deep local and global scene-graph matching for image-text retrieval. In New Trends in Intelligent Software Methodologies, Tools and Techniques; Fujita, H., Perez-Meana, H., Eds.; IOS Press: Amsterdam, The Nether- lands, 2021. doi:10.3233/FAIA210049
- 14.
Liu, C.X.; Mao, Z.D.; Zhang, T.Z.; et al. Graph structured network for image-text matching. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13—19 June 2020; IEEE: New York, NY, USA, 2020; pp. 10918–10927. doi:10.1109/CVPR42600.2020.01093
- 15.
Diao, H.W.; Zhang, Y.; Ma, L.; et al. Similarity reasoning and filtration for image-text matching. In Proceedings of the 35th AAAIConference on Artificial Intelligence, New York, NY, USA, 2—9 February 2021; AAAI Press: Palo Alto, CA, USA, 2021; pp. 1218–1226. doi:10.1609/aaai.v35i2.16209
- 16.
Yang, Q.; Liu, Y.; Chen, T.J.; et al. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST), 2019, 10: 12. doi:10.1145/3298981
- 17.
Liu, D.B.; Miller, T. Federated pretraining and fine tuning of BERT using clinical notes from multiple silos. arXiv, 2020, arXiv: 2002.08562.
- 18.
Zhuo, Y.X.; Li, B.X. Fedns: Improving federated learning for collaborative image classification on mobile clients. In Proceedings of 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5—9 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. doi:10.1109/ICME51207.2021.9428075
- 19.
Wang, H.; Zeng, Z.R.; Liu, R.F.; et al. A federated learning based Chinese text classification model with parameter factorization weighting. In Proceedings ofthe 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 17—19 November 2021; IEEE: New York, NY, USA, 2021; pp. 299–303. doi:10.1109/IC-NIDC54101.2021.9660471
- 20.
Lyu, L.J.; Yu, H.; Ma, X.J.; et al. Privacy and robustness in federated learning: Attacks and defenses. IEEE Trans. Neural Netw. Learn. Syst., 2024, 35, 8726–8746. doi:10.1109/TNNLS.2022.3216981
- 21.
Faghri, F.; Fleet, D.J.; Kiros, J.R.; et al. VSE++: Improved visual-semantic embeddings. arXiv, 2018, arXiv: 1707.05612.
- 22.
Li, K.P.; Zhang, Y.L.; Li, K.; et al. Visual semantic reasoning for image-text matching. In Proceedings of2019 IEEE/CVF Interna- tional Conference on Computer Vision (ICCV), Seoul, Korea (South), 27 October 2019–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 4653–4661. doi:10.1109/ICCV.2019.00475
- 23.
Zong, L.L.; Xie, Q.J.; Zhou, J.H.; et al. FedCMR: Federated cross-modal retrieval. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Online, 11—15 July 2021; ACM: New York, 2021; pp. 1672–1676. doi:10.1145/3404835.3462989
- 24.
McMahan, B.; Moore, E.; Ramage, D.; et al. Communication-efficient learning of deep networks from decentralized data. In Pro- ceedings ofthe 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20—22 April 2017; pp. 1273–1282.
- 25.
Li, T.; Sahu, A.K.; Zaheer, M.; et al. Federated optimization in heterogeneous networks. In Proceedings of the 3rd Conference on Machine Learning and Systems, Austin, TX, USA, 2—4 March 2020; pp. 429–450.
- 26.
Ren, S.Q.; He, K.M.; Girshick, R.; et al. Faster R-CNN: Towards real-time object detection with region proposal networks. In Pro- ceedings ofthe 29th International Conference on Neural Information Processing Systems, Montreal, Canada, 7—12 December 2015; MIT Press: Cambridge, UK, 2015; pp. 91–99.
- 27.
Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global vectors for word representation. In Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25—29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 1532–1543. doi:10.3115/v1/D14-1162
- 28.
Lin, T.Y.; Maire, M.; Belongie, S.; et al. Microsoft COCO: Common objects in context. In Proceedings ofthe 13th European Con- ference on Computer Vision, Zurich, Switzerland, 6—12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. doi:10.1007/978-3-319-10602-__148
- 29.
Li, Q.B.; Diao, Y.Q.; Chen, Q.; et al. Federated learning on non-IID data silos: An experimental study. In Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9—12 May 2022; IEEE: New York, NY, USA, 2022; pp. 965–978. doi:10.1109/ICDE53745.2022.00077
- 30.
Li, A.; Sun, J.W.; Wang, B.H.; et al. LotteryFL: Empower edge intelligence with personalized and communication-efficient feder- ated learning. In Proceedings of 2021 IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 14—17 December 2021; IEEE: New York, NY, USA, 2021; pp. 68–79. doi:10.1145/3453142.3492909
- 31.
Kairouz, P.; McMahan, H.B.; Avent, B.; et al. Advances and open problems in federated learning. Found. Trends® Mach. Learn., 2021, 14: 1–210. doi:10.1561/2200000083