2506000831
  • Open Access
  • Article
Unscented Kalman Filtering for Nonlinear Systems with Stochastic Nonlinearities under FlexRay Protocol
  • Xianzheng Meng 1, 2, 3,   
  • Hanbo Wang 1, 2, 3,   
  • Yongxin Li 1, 2, 3,   
  • Yuxuan Shen 1, 2, 3, *

Received: 13 Jan 2025 | Accepted: 04 May 2025 | Published: 27 Jun 2025

Abstract

In this paper, an unscented Kalman filtering problem is considered for a class of nonlinear systems with stochastic nonlinearities under the FlexRay protocol. The phenomenon of stochastic nonlinearities is characterized by the statistical means to account for engineering practice. Moreover, with the FlexRay protocol implemented between the sensors and the filter, an appropriate measurement model is established to characterize the measurement outputs after data transmission via the FlexRay protocol. By considering the stochastic nonlinearities and the FlexRay protocol, an tailored unscented Kalman filtering algorithm is designed where the influence of the stochastic nonlinearities and the FlexRay protocol is quantified. In the end, the effectiveness of the proposed filtering algorithm is verified in estimating the state of nonlinear systems through simulation experiments.

References 

  • 1.

    Pan, Y.N.; Wu, Y.M.; Lam, H.K. Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst., 2022, 30: 4359−4368. doi: 10.1109/TFUZZ.2022.3148875

  • 2.

    Li, X.G.; Feng, S.; Hou, N.; et al. Surface microseismic data denoising based on sparse autoencoder and Kalman filter. Syst. Sci. Control Eng., 2022, 10: 616−628. doi: 10.1080/21642583.2022.2087786

  • 3.

    Pang, Z.H.; Fan, L.Z.; Sun, J.; et al. Detection of stealthy false data injection attacks against networked control systems via active data modification. Inf. Sci., 2021, 546: 192−205. doi: 10.1016/j.ins.2020.06.074

  • 4.

    Hu, J.; Jia, C.Q.; Yu, H.; et al. Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints. IEEE/CAA J. Autom. Sin., 2022, 9: 941−944. doi: 10.1109/JAS.2022.105581

  • 5.

    Ding, D.R.; Han, Q.L.; Ge, X.H.; et al. Secure state estimation and control of cyber-physical systems: A survey. IEEE Trans. Syst. Man Cybern. Syst., 2021, 51: 176−190. doi: 10.1109/TSMC.2020.3041121

  • 6.

    Ciuonzo, D.; Aubry, A.; Carotenuto, V. Rician MIMO channel- and jamming-aware decision fusion. IEEE Trans. Signal Process., 2017, 65: 3866−3880. doi: 10.1109/TSP.2017.2686375

  • 7.

    Leong, A.S.; Dey, S.; Nair, G.N. Quantized filtering schemes for multi-sensor linear state estimation: Stability and performance under high rate quantization. IEEE Trans. Signal Process., 2013, 61: 3852−3865. doi: 10.1109/TSP.2013.2264465

  • 8.

    Yu, M.; Wang, L.; Chu, T.G.; et al. Stabilization of networked control systems with data packet dropout and transmission delays: Continuous-time case. Eur. J. Control, 2005, 11: 40−49. doi: 10.3166/ejc.11.40-49

  • 9.

    Li, Y.J.; Liu, G.P.; Sun, S.L.; et al. Prediction-based approach to finite-time stabilization of networked control systems with time delays and data packet dropouts. Neurocomputing, 2019, 329: 320−328. doi: 10.1016/j.neucom.2018.09.057

  • 10.

    Bu, X.Y.; Dong, H.L.; Han, F.; et al. Event-triggered distributed filtering over sensor networks with deception attacks and partial measurements. Int. J. Gen. Syst., 2018, 47: 522−534. doi: 10.1080/03081079.2018.1462353

  • 11.

    Cui, P.; Zhang, H.S.; Lam, J.; et al. Real-time Kalman filtering based on distributed measurements. Int. J. Robust Nonlinear Control, 2013, 23: 1597−1608. doi: 10.1002/rnc.2848

  • 12.

    Sinopoli, B.; Schenato, L.; Franceschetti, M.; et al. Kalman filtering with intermittent observations. IEEE Trans. Autom. Control, 2004, 49: 1453−1464. doi: 10.1109/TAC.2004.834121

  • 13.

    Wang, W.; Ma, L.F.; Rui, Q.Q.; et al. A survey on privacy-preserving control and filtering of networked control systems. Int. J. Syst. Sci., 2024, 55: 2269−2288. doi: 10.1080/00207721.2024.2343734

  • 14.

    Gao, P.X.; Jia, C.Q.; Zhou, A.Z. Encryption–decryption-based state estimation for nonlinear complex networks subject to coupled perturbation. Syst. Sci. Control Eng., 2024, 12: 2357796. doi: 10.1080/21642583.2024.2357796

  • 15.

    Yuan, M.M.; Qian, W. Adaptive output feedback tracking control for nonlinear systems with unknown growth rate. Int. J. Netw. Dyn. Intell., 2024, 3: 100002. doi: 10.53941/ijndi.2024.100002

  • 16.

    Wang, W.; Wang, M. Adaptive neural event-triggered output-feedback optimal tracking control for discrete-time pure-feedback nonlinear systems. Int. J. Netw. Dyn. Intell., 2024, 3: 100010. doi: 10.53941/ijndi.2024.100010

  • 17.

    Boutayeb, M.; Aubry, D. A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans. Autom. Control, 1999, 44: 1550−1556. doi: 10.1109/9.780419

  • 18.

    Kai, X.; Wei, C.L.; Liu, L.D. Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 2010, 40: 399−405. doi: 10.1109/TSMCA.2009.2034836

  • 19.

    Zhang, Y.J.; Li, M.; Zhang, Y.; et al. An enhanced adaptive unscented Kalman filter for vehicle state estimation. IEEE Trans. Instrum. Meas., 2022, 71: 6502412. doi: 10.1109/TIM.2022.3180407

  • 20.

    Li, L.; Yu, D.D.; Xia, Y.Q.; et al. Stochastic stability of a modified unscented Kalman filter with stochastic nonlinearities and multiple fading measurements. J. Franklin Inst., 2017, 354: 650−667. doi: 10.1016/j.jfranklin.2016.10.028

  • 21.

    Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE, 2004, 92: 401−422. doi: 10.1109/JPROC.2003.823141

  • 22.

    Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control, 2000, 45: 477−482. doi: 10.1109/9.847726

  • 23.

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O. Discrete-time state estimation for stochastic polynomial systems over polynomial observations. Int. J. Gen. Syst., 2018, 47: 460−476. doi: 10.1080/03081079.2018.1461098

  • 24.

    Liu, T.J.; Wang, Z.D.; Liu, Y.; et al. Unscented-Kalman-filter-based remote state estimation for complex networks with quantized measurements and amplify-and-forward relays. IEEE Trans. Cybern., 2024, 54: 6819−6831. doi: 10.1109/TCYB.2024.3446649

  • 25.

    Li, C.Y.; Wang, Z.D.; Song, W.H.; et al. Resilient unscented Kalman filtering fusion with dynamic event-triggered scheme: Applications to multiple unmanned aerial vehicles. IEEE Trans. Control Syst. Technol., 2023, 31: 370−381. doi: 10.1109/TCST.2022.3180942

  • 26.

    Hu, J.; Wang, Z.D.; Alsaadi, F.E.; et al. Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Inf. Fusion, 2017, 38: 74−83. doi: 10.1016/j.inffus.2017.03.003

  • 27.

    Dai, D.Y.; Li, J.H.; Song, Y.H.; et al. Event-based recursive filtering for nonlinear bias-corrupted systems with amplify-and-forward relays. Syst. Sci. Control Eng., 2024, 12: 2332419. doi: 10.1080/21642583.2024.2332419

  • 28.

    Wang, W.; Nešić, D.; Postoyan, R. Emulation-based stabilization of networked control systems implemented on FlexRay. Automatica, 2015, 59: 73−83. doi: 10.1016/j.automatica.2015.06.010

  • 29.

    Cui, G.F.; Wu, L.B.; Wu, M. Adaptive event-triggered fault-tolerant control for leader-following consensus of multi-agent systems. Int. J. Syst. Sci., 2024, 55: 3291−3303. doi: 10.1080/00207721.2024.2367074

  • 30.

    Zhang, R.; Liu, H.J.; Liu, Y.F.; et al. Dynamic event-triggered state estimation for discrete-time delayed switched neural networks with constrained bit rate. Syst. Sci. Control Eng., 2024, 12: 2334304. doi: 10.1080/21642583.2024.2334304

  • 31.

    Wu, Y.B.; Niu, Y.G.; Yang, Y.K. Security sliding mode control for T-S fuzzy systems under attack probability-dependent dynamic round-robin protocol. Int. J. Syst. Sci., 2024, 55: 926−940. doi: 10.1080/00207721.2023.2301037

  • 32.

    Cao, Z.R.; Niu, Y.G.; Karimi, H.R. Sliding mode control of automotive electronic valve system under weighted try-once-discard protocol. Inf. Sci., 2020, 515: 324−340. doi: 10.1016/j.ins.2019.12.032

  • 33.

    Li, C.Y.; Liu, Y.F.; Gao, M.; et al. Fault-tolerant formation consensus control for time-varying multi-agent systems with stochastic communication protocol. Int. J. Netw. Dyn. Intell., 2024, 3: 100004. doi: 10.53941/ijndi.2024.100004

  • 34.

    Liu, S.; Wang, Z.D.; Wang, L.C.; et al. Recursive set-membership state estimation over a FlexRay network. IEEE Trans. Syst. Man Cybern. Syst., 2022, 52: 3591−3601. doi: 10.1109/TSMC.2021.3071390

  • 35.

    Wang, W.; Nešić, D.; Postoyan, R. Observer design for networked control systems with FlexRay. Automatica, 2017, 82: 42−48. doi: 10.1016/j.automatica.2017.03.038

  • 36.

    Makowitz, R.; Temple, C. Flexray-a communication network for automotive control systems. In Proceedings of 2006 IEEE International Workshop on Factory Communication Systems, Turin, Italy, 28–30 June 2006; IEEE: New York, 2006; pp. 207–212. doi: 10.1109/WFCS.2006.1704153

  • 37.

    Shaw, R.; Jackman, B. An introduction to FlexRay as an industrial network. In Proceedings of 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June 2008–02 July 2008; IEEE: New York, 2008; pp. 1849–1854. doi: 10.1109/ISIE.2008.4676987

  • 38.

    Liu, S.; Wang, Z.D.; Wang, L.C.; et al. Finite-horizon H∞ filtering via a high-rate network with the FlexRay protocol. IEEE Trans. Autom. Control, 2023, 68: 3596−3603. doi: 10.1109/TAC.2022.3190791

  • 39.

    Zheng, C.C.; Fu, H.; Bai, J.J.; et al. FlexRay protocol based distributed nonfragile dissipative filtering of state-saturated switched stochastic systems. Int. J. Syst. Sci., 2024, 55: 714−727. doi: 10.1080/00207721.2023.2293685

  • 40.

    Li, X.; Cheng, K.J.; Wang, Z.H.; et al. Distributed interval observer-based robust control for multirate systems under the FlexRay protocol. J. Franklin Inst., 2024, 361: 106708. doi: 10.1016/j.jfranklin.2024.106708

  • 41.

    Hu, J.; Wang, Z.D.; Chen, D.Y.; et al. Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects. Inf. Fusion, 2016, 31: 65−75. doi: 10.1016/j.inffus.2016.01.001

  • 42.

    Li, W.L.; Sun, S.H.; Jia, Y.M.; et al. Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digit. Signal Process., 2016, 48: 93−103. doi: 10.1016/j.dsp.2015.09.004

  • 43.

    Wang, Y.Z.; Wang, Z.D.; Zou, L.; et al. Ultimately bounded PID control for T-S fuzzy systems under FlexRay communication protocol. IEEE Trans. Fuzzy Syst., 2023, 31: 4308−4320. doi: 10.1109/TFUZZ.2023.3282044

  • 44.

    Liu, S.; Wang, Z.D.; Chen, Y.; et al. Protocol-based unscented Kalman filtering in the presence of stochastic uncertainties. IEEE Trans. Autom. Control, 2020, 65: 1303−1309. doi: 10.1109/TAC.2019.2929817

  • 45.

    Geng, H.; Mousavi, A.; Markatos, N.G.; et al. Reliable cost prediction and control for intelligent manufacture: a key performance indicator perspective. Int. J. Netw. Dyn. Intell., 2024, 3: 100001. doi: 10.53941/ijndi.2024.100001

  • 46.

    Geng, H.; Wang, Z.D.; Ma, L.F.; et al. Distributed filter design over sensor networks under try-once-discard protocol: Dealing with sensor-bias-corrupted measurement censoring. IEEE Trans. Syst. Man Cybern. Syst., 2024, 54: 3032−3043. doi: 10.1109/TSMC.2024.3354883

Share this article:
How to Cite
Meng, X.; Wang, H.; Li, Y.; Shen, Y. Unscented Kalman Filtering for Nonlinear Systems with Stochastic Nonlinearities under FlexRay Protocol. International Journal of Network Dynamics and Intelligence 2025, 4 (2), 100010. https://doi.org/10.53941/ijndi.2025.100010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.