2506000837
  • Open Access
  • Article
Sampled-Data Based Containment Control for a Class of   Nonlinear Multiagent Systems With Dynamic Leaders and Control Saturation
  • Luyang Yu 1,   
  • Jiayi Ding 1,   
  • Huihui Peng 1,   
  • Yang Liu 2, *,   
  • Yurong Liu 1

Received: 10 Feb 2025 | Accepted: 04 May 2025 | Published: 30 Jun 2025

Abstract

This article focuses on examining the sampled-data based containment control (CC) issue for nonlinear multiagent systems (MASs) with dynamic leaders and input saturation. The proposed control protocol requires that the information is exchanged and calculated only at the sampling instants with the aim of conserving communication resources, and the protocol incorporates the control saturation as well. The CC is analyzed by means of the algebraic graph theory, M-matrix theory and Halanay-type inequal- ity, etc. Some criteria are derived to ensure the MAS can realize the CC under the control protocol, and in the meantime, a CC region is also given ensuring that all the followers with their initial stacked states in it will converge ultimately to the convex hull formed by the leaders. Furthermore, the design of the control gain can be carried out by searching for feasible solutions to a group of matrix inequalities. Finally, a numerical illustration is provided to substantiate the efficacy of the theoretical findings.

References 

  • 1.

    Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE, 2007, 95: 215−233. doi: 10.1109/JPROC.2006.887293

  • 2.

    Wu, Y.Q.; Su, H.Y.; Shi, P.; et al. Consensus of multiagent systems using aperiodic sampled-data control. IEEE Trans. Cybern., 2016, 46: 2132−2143. doi: 10.1109/TCYB.2015.2466115

  • 3.

    Miao, G.Y.; Feng, Y.Z.; Li, T. Containment control for multi-agent systems with input saturation. IMA J. Math. Control Inf., 2017, 34: 667−682. doi: 10.1093/imamci/dnv068

  • 4.

    Ye, Y.Y.; Wei, H.Y.; Lu, R.Q.; et al. Containment control for networked fractional-order systems with sampled position data. IEEE Trans. Circuits Syst. I: Regul. Pap., 2021, 68: 3881−3889. doi: 10.1109/TCSI.2021.3090953

  • 5.

    Yu, L.Y.; Peng, H.H.; Liu, Y.R.; et al. Event-driven containment control for a class of nonlinear multi-agent systems with sampled-data. Discrete Contin. Dyn. Syst., 2024, 17: 2947−2966. doi: 10.3934/dcdss.2024101

  • 6.

    Hu, J.P.; Hong, Y.G. Leader-following coordination of multi-agent systems with coupling time delays. Phys. A: Stat. Mech. Appl., 2007, 374: 853−863. doi: 10.1016/j.physa.2006.08.015

  • 7.

    Zhu, W.; Cheng, D.Z. Leader-following consensus of second-order agents with multiple time-varying delays. Automatica, 2010, 46: 1994−1999. doi: 10.1016/j.automatica.2010.08.003

  • 8.

    Cao, W.J.; Zhang, J.H.; Ren, W. Leader–follower consensus of linear multi-agent systems with unknown external disturbances. Syst. Control Lett., 2015, 82: 64−70. doi: 10.1016/j.sysconle.2015.05.007

  • 9.

    Li, H.F.; Liu, Q.R.; Feng, G.; et al. Leader–follower consensus of nonlinear time-delay multiagent systems: A time-varying gain approach. Automatica, 2021, 126: 109444. doi: 10.1016/j.automatica.2020.109444

  • 10.

    Lin, L.; Cao, J.D.; Lam, J.; et al. Leader-follower consensus over finite fields. IEEE Trans. Autom. Control, 2024, 69: 4718−4725. doi: 10.1109/TAC.2024.3354195

  • 11.

    Wu, X.Q.; Mao, B.; Wu, X.Q.; et al. Dynamic event-triggered leader-follower consensus control for MultiAgent systems. SIAM J. Control Optim., 2022, 60: 189−209. doi: 10.1137/20M1321152

  • 12.

    Yaghoubi, Z.; Taheri Javan, N.; Bahaghighat, M. Consensus tracking for a class of fractional-order non-linear multi-agent systems via an adaptive dynamic surface controller. Syst. Sci. Control Eng., 2023, 11: 2207602. doi: 10.1080/21642583.2023.2207602

  • 13.

    Zhang, T.H.; Liu, Q.X.; Liu, J.Y.; et al. Multiple-bipartite consensus for networked lagrangian systems without using neighbours’ velocity information in the directed graph. Syst. Sci. Control Eng., 2023, 11: 2210185. doi: 10.1080/21642583.2023.2210185

  • 14.

    Xiong, H.X.; Chen, G.D.; Ren, H.R.; et al. Event-based model-free adaptive consensus control for multi-agent systems under intermittent attacks. Int. J. Syst. Sci., 2024, 55: 2062−2076. doi: 10.1080/00207721.2024.2329739

  • 15.

    Xu, X.Y.; Liu, Y.G. Adaptive consensus with limited information for uncertain nonlinear multi-agent systems. Int. J. Syst. Sci., 2024, 55: 1820−1834. doi: 10.1080/00207721.2024.2321371

  • 16.

    Cao, Y.C.; Ren, W. Containment control with multiple stationary or dynamic leaders under a directed interaction graph. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009; IEEE: New York, 2009; pp. 3014–3019. doi: 10.1109/CDC.2009.5399946

  • 17.

    Li, P.Y.; Jabbari, F.; Sun, X.M. Containment control of multi-agent systems with input saturation and unknown leader inputs. Automatica, 2021, 130: 109677. doi: 10.1016/j.automatica.2021.109677

  • 18.

    Li, Z.K.; Ren, W.; Liu, X.D.; et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control, 2013, 23: 534−547. doi: 10.1002/rnc.1847

  • 19.

    Cao, Y.C.; Ren, W.; Egerstedt, M. Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. Automatica, 2012, 48: 1586−1597. doi: 10.1016/j.automatica.2012.05.071

  • 20.

    Ge, X.H.; Han, Q.L.; Ding, D.R.; et al. A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing, 2018, 275: 1684−1701. doi: 10.1016/j.neucom.2017.10.008

  • 21.

    Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A.; et al. Laplacian sheep: A hybrid, stop-go policy for leader-based containment control. In Proceedings of the 9th International Workshop on Hybrid Systems: Computation and Control, Santa Barbara, CA, USA, 29–31 March 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 212–226. doi: 10.1007/11730637_18

  • 22.

    Lou, Y.C.; Hong, Y.G. Target containment control of multi-agent systems with random switching interconnection topologies Automatica 2012, 48, 879–885. doi: 10.1016/j.automatica.2012.02.032

  • 23.

    Sun, H.Y.; Han, H.G.; Sun, J.; et al. Leader-following sampled-data consensus of multiagent systems with successive packet losses and stochastic sampling. IEEE Trans. Cybern., 2024, 54: 7381−7391. doi: 10.1109/TCYB.2024.3466610

  • 24.

    Shi, Z.H.; Zou, W.C.; Guo, J. Sampled-data consensus protocol for multiagent systems subject to random intermittent actuator faults. IEEE Syst. J., 2024, 18: 1368−1379. doi: 10.1109/JSYST.2024.3377452

  • 25.

    Wen, H.; Wu, W.; Tong, S.C. Fuzzy adaptive asynchronous sampled-data consensus control for nonlinear multi-agent systems under DoS attacks. J. Control Decis. 2024. doi: 10.1080/23307706.2024.2417826

  • 26.

    Zhang, J.X.; Su, H.S. Formation-containment control for multi-agent systems with sampled data and time delays. Neurocomputing, 2021, 424: 125−131. doi: 10.1016/j.neucom.2019.11.030

  • 27.

    Wang, Y.; Liu, H.J.; Tan, H.L. An overview of filtering for sampled-data systems under communication constraints. Int. J. Network Dyn. Intell., 2023, 2: 100011. doi: 10.53941/ijndi.2023.100011

  • 28.

    Ding, L.S.; Sun, W.W. Predefined time fuzzy adaptive control of switched fractional-order nonlinear systems with input saturation. Int. J. Network Dyn. Intell., 2023, 2: 100019. doi: 10.53941/ijndi.2023.100019

  • 29.

    Tarbouriech, S.; Garcia, G.; da Silva, J.M.G., Jr.; et al. Stability and Stabilization of Linear Systems with Saturating Actuators; Springer: London, UK, 2011. doi: 10.1007/978-0-85729-941-3

  • 30.

    Yu, L.Y.; Cui, Y.; Lu, Z.Y.; et al. Sampled-based bipartite tracking consensus of nonlinear multiagents subject to input saturation. Complex Eng. Syst., 2022, 2: 6. doi: 10.20517/ces.2022.08

  • 31.

    Yang, T.; Meng, Z.Y.; Dimarogonas, D.V.; et al. Global consensus for discrete-time multi-agent systems with input saturation constraints. Automatica, 2014, 50: 499−506. doi: 10.1016/j.automatica.2013.11.008

  • 32.

    Gao, C.; Wang, Z.D.; He, X.; et al. Consensus control of linear multiagent systems under actuator imperfection: When saturation meets fault. IEEE Trans. Syst. Man Cybern. Syst., 2022, 52: 2651−2663. doi: 10.1109/TSMC.2021.3050370

  • 33.
    Taylor, A.E.; Lay, D.C. Introduction to Functional Analysis, 2nd ed.; Krieger Publishing Co., Inc.: Melbourne, USA, 1986.
  • 34.

    Haghshenas, H.; Badamchizadeh, M.A.; Baradarannia, M. Containment control of heterogeneous linear multi-agent systems. Automatica, 2015, 54: 210−216. doi: 10.1016/j.automatica.2015.02.002

  • 35.
    Mei, J.; Ren, W.; Ma, G.F. Distributed containment control for multiple nonlinear systems with identical dynamics. In Proceedings of the 30th Chinese Control Conference, Yantai, China, 22–24 July 2011; IEEE: New York, 2011; pp. 6544–6549.
  • 36.

    Wang, P.; Jia, Y.M. Distributed containment control of second-order multi-agent systems with inherent non-linear dynamics. IET Control Theory Appl., 2014, 8: 277−287. doi: 10.1049/iet-cta.2013.0686

  • 37.

    Xu, J.Q.; Liu, Y.R.; Cui, Y.; et al. Stochastic containment control for a class of nonlinear multi-agent system with switched topology and mixed time-delays. Int. J. Syst. Sci., 2020, 51: 2520−2532. doi: 10.1080/00207721.2020.1797229

  • 38.

    Hu, J.Q.; Yu, J.; Cao, J.D. Distributed containment control for nonlinear multi-agent systems with time-delayed protocol. Asian J. Control, 2016, 18: 747−756. doi: 10.1002/asjc.1131

  • 39.

    Ren, W.; Cao, Y.C. Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues; Springer: London, UK, 2011. doi: 10.1007/978-0-85729-169-1

  • 40.

    Tarbouriech, S.; Prieur, C.; da Silva, J.M.G. Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control, 2006, 51: 1364−1371. doi: 10.1109/TAC.2006.878743

  • 41.

    Yu, L.Y.; Liu, Y.R.; Cui, Y.; et al. Intermittent dynamic event-triggered state estimation for delayed complex networks based on partial nodes. Neurocomputing, 2021, 459: 59−69. doi: 10.1016/j.neucom.2021.06.017

  • 42.

    Liu, Y.R.; Wang, Z.D.; Liu, X.H. On synchronization of coupled neural networks with discrete and unbounded distributed delays. Int. J. Comput. Math., 2008, 85: 1299−1313. doi: 10.1080/00207160701636436

  • 43.

    Liu, Y.R.; Wang, Z.D.; Yuan, Y.; et al. Partial-nodes-based state estimation for complex networks with unbounded distributed delays. IEEE Trans. Neural Networks Learn. Syst., 2018, 29: 3906−3912. doi: 10.1109/TNNLS.2017.2740400

  • 44.

    Zou, L.; Wang, Z.D.; Shen, B.; et al. Secure recursive state estimation of networked systems against eavesdropping: A partial-encryption-decryption method. IEEE Trans. Autom. Control, 2024. in press, doi: 10.1109/TAC.2024.3512413

  • 45.

    Zou, L.; Wang, Z.D.; Shen, B.; et al. Recursive state estimation in relay channels with enhanced security against eavesdropping: An innovative encryption-decryption framework. Automatica, 2025, 174: 112159. doi: 10.1016/j.automatica.2025.112159

Share this article:
How to Cite
Yu, L.; Ding, J.; Peng, H.; Liu, Y.; Liu, Y. Sampled-Data Based Containment Control for a Class of   Nonlinear Multiagent Systems With Dynamic Leaders and Control Saturation. International Journal of Network Dynamics and Intelligence 2025, 4 (2), 100011. https://doi.org/10.53941/ijndi.2025.100011.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.