2506000839
  • Open Access
  • Article
Privacy-Preserving Distributed Recursive Filtering for State-Saturated Systems with Quantization Effects
  • Youyin Hu,   
  • Chen Zhang,   
  • Shuai Liu *

Received: 16 Feb 2025 | Accepted: 04 May 2025 | Published: 30 Jun 2025

Abstract

This paper addresses the problem of distributed recursive filtering for state-saturated systems in a networked communication environment. An output mask function is employed to safeguard the pri- vacy of interaction data during node exchange in sensor networks. Scaled uniform quantization is intro- duced to facilitate the digital communication and optimize the network resource usage. The primary objective of the study is to design a distributed recursive filter that ensures the filtering error covariance remains bounded over a finite horizon. Specifically, by using Riccati-like equations, an upper bound for the filtering error covariance is derived, which depends on the network topology, the output mask func- tion, and the quantization level. The desired gain matrix is then solved recursively. Finally, the effective- ness of the proposed filtering algorithm is demonstrated through a three-tank simulation example.

References 

  • 1.

    Li, X.H.; Ye, D. Dynamic event-triggered distributed filtering design for interval type-2 fuzzy systems over sensor networks under deception attacks. Int. J. Syst. Sci. 2023, 54, 2875–2890. doi: 10.1080/00207721.2020.1871528

  • 2.

    Wang, Y.A.; Shen, B.; Zou, L.; et al. A survey on recent advances in distributed filtering over sensor networks subject to communication constraints. Int. J. Netw. Dyn. Intell. 2023, 2, 100007. doi: 10.53941/ijndi0201007

  • 3.

    Hou, N.; Wang, Z.D.; Dong, H.L.; et al. Distributed fault estimation over sensor networks with randomly switching topologies under binary encoding scheme. IEEE Trans. Netw. Sci. Eng. 2024, 11, 2715–2728. doi: 10.1109/TNSE.2023.3348432

  • 4.

    Geng, H.; Wang, Z.D.; Ma, L.F.; et al. Distributed filter design over sensor networks under try-once-discard protocol: Dealing with sensor-bias-corrupted measurement censoring. IEEE Trans. Syst., Man, Cybern.: Syst. 2024, 54, 3032–3043. doi: 10.1109/TSMC.2024.3354883

  • 5.

    Liu, Q.Y.; Wang, Z.D.; Dong, H.L.; et al. Distributed Kalman filtering under two-bitrate periodic coding strategies. IEEE Trans. Automat. Control. 2024, 69, 8633–8646. doi: 10.1109/TAC.2024.3413009

  • 6.

    Chen, W.; Wang, Z.D.; Zou, L.; et al. A regularized least-squares approach to event-based distributed robust filtering over sensor networks. Automatica. 2024, 163, 111604. doi: 10.1016/j.automatica.2024.111604

  • 7.

    Han, F.; Wang, Z.D.; Liu, H.J.; et al. A recursive matrix inequality approach to distributed filtering over binary sensor networks: Handling amplify-and-forward relays. IEEE Trans. Netw. Sci. Eng. 2024, 11, 1347–1362. doi: 10.1109/TNSE.2023.3322378

  • 8.

    Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. doi: 10.1115/1.3662552

  • 9.

    Feng, S.; Li, X.G.; Zhang, S.; et al. A review: State estimation based on hybrid models of Kalman filter and neural network. Syst. Sci. Control Eng. 2023, 11, 2173682. doi: 10.1080/21642583.2023.2173682

  • 10.

    Liu, D.; Wang, Z.D.; Liu, Y.R.; et al. Extended Kalman filtering subject to random transmission delays: Dealing with packet disorders. Inf. Fusion. 2020, 60, 80–86. doi: 10.1016/j.inffus.2020.02.006

  • 11.

    Liu, S.; Wang, Z.D.; Hu, J.; et al. Protocol-based extended Kalman filtering with quantization effects: The Round-Robin case. Int. J. Robust Nonlinear Control. 2020, 30, 7927–7946. doi: 10.1002/rnc.5205

  • 12.

    Wang, Z.D.; Liu, X.H.; Liu, Y.R.; et al. An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series. IEEE/ACM Trans. Comput. Biol. Bioinf. 2009, 6, 410–419. doi: 10.1109/TCBB.2009.5

  • 13.

    Moradi, A.; Venkategowda, N.K.D.; Talebi, S.P.; et al. Privacy-preserving distributed Kalman filtering. IEEE Trans. Signal Process. 2022, 70, 3074–3089. doi: 10.1109/TSP.2022.3182590

  • 14.

    Rajagopal, A.; Chitraganti, S. State estimation and control for networked control systems in the presence of correlated packet drops. Int. J. Syst. Sci. 2023, 54, 2352–2365. doi: 10.1080/00207721.2023.2230225

  • 15.

    Wang, L.C.; Wang, Z.D.; Liu, S.; et al. Unscented Kalman filtering over full-duplex relay networks under binary encoding schemes. IEEE Trans. Automat. Control. 2025, 70, 3441–3448. doi: 10.1109/TAC.2024.3521281

  • 16.

    Zheng, S.S.; Liu, S.; Wang, L.C. Event-triggered distributed optimization for model-free multi-agent systems. Front. Inform. Technol. Electron. Eng. 2024, 25, 214–224. doi: 10.1631/FITEE.2300568

  • 17.

    Wang, L.C.; Wang, Z.D.; Zhao, D.; et al. Recursive filtering for discrete-time stochastic complex networks under bit-rate constraints: A locally minimum variance approach. IEEE Trans. Automat. Control. 2024, 69, 3441–3448. doi: 10.1109/TAC.2023.3349102

  • 18.

    Wang, L.C.; Wang, Z.D.; Zhao, D.; et al. Stabilization of linear discrete-time systems over resource-constrained networks under dynamical multiple description coding scheme. Automatica. 2023, 156, 111160. doi: 10.1016/J.AUTOMATICA.2023.111160

  • 19.

    Zhang, R.; Liu, H.J.; Liu, Y.F.; et al. Dynamic event-triggered state estimation for discrete-time delayed switched neural networks with constrained bit rate. Syst. Sci. Control Eng. 2024, 12, 2334304. doi: 10.1080/21642583.2024.2334304

  • 20.

    Xing, S.Y.; Luan, H.; Deng, F.Q. Exponential synchronisation for delayed Clifford-valued coupled switched neural networks via static event-triggering rule. Int. J. Syst. Sci. 2024, 55, 1114–1126. doi: 10.1080/00207721.2023.2301498

  • 21.

    Li, X.; Song, Q.K.; Liu, Y.R. Optimal control and non-zero-sum differential game for Hurwicz model considering uncertain dynamic systems with multiple input delays. Int. J. Syst. Sci. 2023, 54, 1676–1693. doi: 10.1080/00207721.2023.2208133

  • 22.

    Liu, N.; Qian, W. Stability analysis of low-voltage direct current system with time-varying delay. Syst. Sci. Control Eng. 2024, 12, 2293918. doi: 10.1080/21642583.2023.2293918

  • 23.

    Liu, Y.; Wang, Z.D.; Lin, H.; et al. Encoding-decoding-based fusion estimation with filter-and-forward relays and stochastic measurement delays. Inf. Fusion. 2023, 100, 101963. doi: 10.1016/j.inffus.2023.101963

  • 24.

    Li, J.; Suo, Y.H.; Chai, S.C.; et al. Resilient and event-triggered control of singular Markov jump systems against cyber attacks. Int. J. Syst. Sci. 2024, 55, 222–236. doi: 10.1080/00207721.2023.2269293

  • 25.

    Sakthivel, R.; Parivallal, A.; Kwon, O.M.; et al. Observer-based leader-following cluster consensus for positive multi-agent systems with input time-varying delay. Int. J. Syst. Sci. 2024, 55, 3017–3031. doi: 10.1080/00207721.2024.2364294

  • 26.

    Wu, Y.B.; Niu, Y.G.; Yang, Y.K. Security sliding mode control for T-S fuzzy systems under attack probability-dependent dynamic round-robin protocol. Int. J. Syst. Sci. 2024, 55, 926–940. doi: 10.1080/00207721.2023.2301037

  • 27.

    Hu, J.; Sun, Q.Y.; Wang, R.; et al. An improved privacy-preserving consensus strategy for AC microgrids based on output mask approach and node decomposition mechanism. IEEE Trans. Automat. Sci. Eng. 2024, 21, 642–651. doi: 10.1109/TASE.2022.3217677

  • 28.

    Chen, W.; Wang, Z.D.; Hu, J.; et al. Privacy-preserving distributed economic dispatch of microgrids using edge-based additive perturbations: An accelerated consensus algorithm. IEEE Trans. Syst., Man, Cybern.: Syst. 2024, 54, 2638–2650. doi: 10.1109/TSMC.2023.3344885

  • 29.

    Chen, W.; Wang, Z.D.; Liu Q.Y.; et al. A new privacy-preserving average consensus algorithm with two-phase structure: Applications to load sharing of microgrids. Automatica. 2024, 167, 111715. doi: 10.1016/j.automatica.2024.111715

  • 30.

    Gao, C.; Wang, Z.D.; He, X.; et al. Sampled-data-based fault-tolerant consensus control for multi-agent systems: A data privacy preserving scheme. Automatica. 2021, 133, 109847. doi: 10.1016/j.automatica.2021.109847

  • 31.

    Chen, W.; Wang, Z.D.; Dong, H.L.; et al. Privacy-preserving distributed economic dispatch of microgrids over directed networks via state decomposition: A fast consensus algorithm. IEEE Trans. Ind. Inf. 2024, 20, 4092–4102. doi: 10.1109/TII.2023.3321027

  • 32.

    Wang, W.; Ma, L.F.; Rui, Q.Q.; et al. A survey on privacy-preserving control and filtering of networked control systems. Int. J. Syst. Sci. 2024, 55, 2269–2288. doi: 10.1080/00207721.2024.2343734

  • 33.

    Altafini, C. A system-theoretic framework for privacy preservation in continuous-time multiagent dynamics. Automatica. 2020, 122, 109253. doi: 10.1016/j.automatica.2020.109253

  • 34.

    Wang, A.J.; He, H.B.; Liao, X.F. Event-triggered privacy-preserving average consensus for multiagent networks with time delay: An output mask approach. IEEE Trans. Syst., Man, Cybern.: Syst. 2021, 51, 4520–4531. doi: 10.1109/TSMC.2019.2939680

  • 35.

    Wang, L.C.; Wang, Z.D.; Shen, B.; et al. Recursive filtering with measurement fading: A multiple description coding scheme. IEEE Trans. Automat. Control. 2021, 66, 5144–5159. doi: 10.1109/TAC.2020.3034196

  • 36.

    He, X.; Wang, Z.D.; Wang, X.F.; et al. Networked strong tracking filtering with multiple packet dropouts: Algorithms and applications. IEEE Trans. Ind. Electron. 2014, 61, 1454–1463. doi: 10.1109/TIE.2013.2261038

Share this article:
How to Cite
Hu, Y.; Zhang, C.; Liu, S. Privacy-Preserving Distributed Recursive Filtering for State-Saturated Systems with Quantization Effects. International Journal of Network Dynamics and Intelligence 2025, 4 (2), 100012. https://doi.org/10.53941/ijndi.2025.100012.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.