- 1.
Wei, J.; Tay, Y.; Bommasani, R.; et al. Emergent abilities of large language models. arXiv, 2022, arXiv: 2206.07682.
- 2.
Pandya, K.; Holia, M. Automating Customer Service using LangChain: Building custom open-source GPT Chatbot for organizations. arXiv, 2023, arXiv: 2310.05421.
- 3.
Yuan, A.; Coenen, A.; Reif, E.; et al. Wordcraft: Story writing with large language models. In Proceedings of the 27th International Conference on Intelligent User Interfaces, Helsinki, Finland, 22–25 March 2022; ACM: New York, NY, USA, 2022; pp. 841–852. doi: 10.1145/3490099.3511105
- 4.
Lopez-Lira, A.; Tang, Y.H. Can chatGPT forecast stock price movements? Return predictability and large language models. arXiv, 2023, arXiv: 2304.07619.
- 5.
Shayegani, E.; Mamun, A.A.; Fu, Y.; et al. Survey of vulnerabilities in large language models revealed by adversarial attacks. arXiv, 2023, arXiv: 2310.10844.
- 6.
Kour, G.; Zalmanovici, M.; Zwerdling, N.; et al. Unveiling safety vulnerabilities of large language models. In Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics, Singapore, 6 December 2023; ACL: Stroudsburg, PA, USA, 2023; pp. 111–127.
- 7.
Shi, J.W.; Liu, Y.X.; Zhou, P.; et al. BadGPT: Exploring security vulnerabilities of ChatGPT via backdoor attacks to InstructGPT. arXiv, 2023, arXiv: 2304.12298.
- 8.
Zhao, S.; Jia, M.H.Z.; Tuan, L.A.; et al. Universal vulnerabilities in large language models: Backdoor attacks for in-context learning. arXiv 2024, arXiv: 2401.05949.
- 9.
Liu, Y.; Deng, G.L.; Li, Y.K.; et al. Prompt injection attack against LLM-integrated applications. arXiv, 2023, arXiv: 2306.05499.
- 10.
Pedro, R.; Castro, D.; Carreira, P.; et al. From prompt injections to SQL injection attacks: How protected is your LLM-integrated web application? arXiv, 2023, arXiv: 2308.01990.
- 11.
Yu, J.H.; Wu, Y.H.; Shu, D.; et al. Assessing prompt injection risks in 200+ custom GPTs. arXiv, 2023, arXiv: 2311.11538.
- 12.
Wu, F.Z.; Zhang, N.; Jha, S.; et al. A new era in LLM security: Exploring security concerns in real-world LLM-based systems. arXiv, 2024, arXiv: 2402.18649.
- 13.
Greshake, K.; Abdelnabi, S.; Mishra, S.; et al. Not what you've signed up for: Compromising real-world LLM-integrated applications with indirect prompt injection. In Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security, Copenhagen, Denmark, 30 November 2023; ACM: New York, NY, USA, 2023; pp. 79–90. doi: 10.1145/3605764.3623985
- 14.
Camacho-Collados, J.; Pilehvar, M.T. From word to sense embeddings: A survey on vector representations of meaning. J. Artif. Intell. Res., 2018, 63: 743−788. doi: 10.1613/jair.1.11259
- 15.
Devlin, J.; Chang, M.W.; Lee, K.; et al. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; ACL: Stroudsburg, PA, USA, 2019; pp. 4171–4186. doi: 10.18653/v1/N19-1423
- 16.
OpenAI; Achiam, J.; Adler, S.; et al. GPT-4 technical report. arXiv, 2023, arXiv: 2303.08774.
- 17.
Anil, R.; Dai, A.M.; Firat, O.; et al. PaLM 2 technical report. arXiv, 2023, arXiv: 2305.10403.
- 18.
Touvron, H.; Lavril, T.; Izacard, G.; et al. LLaMA: Open and efficient foundation language models. arXiv, 2023, arXiv: 2302.13971.
- 19.
Wen, H.; Li, Y.C.; Liu, G.H.; et al. Empowering LLM to use smartphone for intelligent task automation. arXiv, 2023, arXiv: 2308.15272.
- 20.
Alto, V. Modern Generative AI with ChatGPT and OpenAI Models: Leverage the Capabilities of OpenAI's LLM for Productivity and Innovation with GPT3 and GPT4; Packt Publishing: Birmingham, UK, 2023.
- 21.
Yu, S.C.; Fang, C.R.; Ling, Y.C.; et al. LLM for test script generation and migration: Challenges, capabilities, and opportunities. In Proceedings of 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security, Chiang Mai, Thailand, 22–26 October 2023; IEEE: New York, NY, USA, 2023; pp. 206–217.
- 22.
Cui, C.; Ma, Y.S.; Cao, X.; et al. Drive as you speak: Enabling human-like interaction with large language models in autonomous vehicles. In Proceedings of 2024 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 1–6 January 2024; IEEE: New York, 2024; pp. 902–909.
- 23.
Das, A.; Tariq, A.; Batalini, F.; et al. Exposing vulnerabilities in clinical LLMs through data poisoning attacks: Case study in breast cancer. medRxiv 2024, in press. doi: 10.1101/2024.03.20.24304627
- 24.
Zou, A.; Wang, Z.F.; Carlini, N.; et al. Universal and transferable adversarial attacks on aligned language models. arXiv, 2023, arXiv: 2307.15043.
- 25.
Wei, A.; Haghtalab, N.; Steinhardt, J. Jailbroken: How does LLM safety training fail? In Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023.
- 26.
Wang, J.G.; Wang, J.; Li, M.; et al. Pandora’s white-box: Increased training data leakage in Open LLMs. arXiv, 2024, arXiv: 2402.17012.
- 27.
Cai, X.R.; Xu, H.D.; Xu, S.H.; et al. BadPrompt: Backdoor attacks on continuous prompts. In Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022.
- 28.
Carlini, N.; Tramèr, F.; Wallace, E.; et al. Extracting training data from large language models. In Proceedings of the 30th USENIX Security Symposium, 11–13 August 2021; USENIX Association: Berkeley, CA, USA, 2021; pp. 2633–2650.
- 29.
Liu, T.; Deng, Z.Z.; Meng, G.Z.; et al. Demystifying RCE vulnerabilities in LLM-integrated apps. arXiv, 2023, arXiv: 2309.02926.
- 30.
Zhong, L.; Wang, Z.L. A study on robustness and reliability of large language model code generation. arXiv, 2023, arXiv: 2308.10335.
- 31.
He, J.X.; Vechev, M. Large language models for code: Security hardening and adversarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023; ACM: New York, NY, USA, 2023; pp. 1865–1879. doi: 10.1145/3576915.3623175
- 32.
Greshake, K.; Abdelnabi, S.; Mishra, S.; et al. More than you've asked for: A comprehensive analysis of novel prompt injection threats to application-integrated large language models. arXiv, 2023, arXiv: 2302.12173.
- 33.
Liu, X.G.; Yu, Z.Y.; Zhang, Y.Z.; et al. Automatic and universal prompt injection attacks against large language models. arXiv, 2024, arXiv: 2403.04957.
- 34.
Hadi, M.U.; Al-Tashi, Q.; Qureshi, R.; et al. A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Prepr. 2023. doi: 10.36227/techrxiv.23589741.v1
- 35.
Pilehvar, M.T.; Camacho-Collados, J. Embeddings in Natural Language Processing: Theory and Advances in Vector Representations of Meaning; Morgan and Claypool Publishers: San Rafael, CA, USA, 2020.
- 36.
Xian, J.; Teofili, T.; Pradeep, R.; et al. Vector search with OpenAI embeddings: Lucene is all you need. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, Merida Mexico, 4–8 March 2024; ACM: New York, NY, USA, 2024; pp. 1090–1093. doi: 10.1145/3616855.363569
- 37.
- 38.
Malkov, Y.; Ponomarenko, A.; Logvinov, A.; et al. Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst., 2014, 45: 61−68. doi: 10.1016/j.is.2013.10.006
- 39.
Liu, Y.H.; Ott, M.; Goyal, N.; et al. RoBERTa: A robustly optimized BERT pretraining approach. arXiv, 2019, arXiv: 1907.11692.
- 40.
Sanh, V.; Debut, L.; Chaumond, J.; et al. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv, 2019, arXiv: 1910.01108.
- 41.
Reimers, N.; Gurevych, I. Sentence-BERT: Sentence embeddings using siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 3–7 November 2019; ACL: Stroudsburg, PA, USA, 2019; pp. 3980–3990. doi: 10.18653/v1/D19-1410
- 42.
Labonne, M.; Moran, S. Spam-T5: Benchmarking large language models for few-shot email spam detection. arXiv, 2023, arXiv: 2304.01238.
- 43.
Wan, Z.W. Text classification: A perspective of deep learning methods. arXiv, 2023, arXiv: 2309.13761.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.