2509001341
  • Open Access
  • Article

Fault Diagnosis Method for Rolling Bearings in High-Noise Environments Based on COA-FMD-ITEO

  • Chenlong Mao,   
  • Chuanbo Wen *

Received: 22 Jan 2025 | Accepted: 30 Mar 2025 | Published: 17 Sep 2025

Abstract

To address the challenges in extracting features from rolling bearing vibration signals in high- noise environments, a novel fault diagnosis method combining feature modal decomposition based on Cheetah Optimization Algorithm (COA-FMD) and Improved Teager Energy Operator (ITEO) is proposed. First, the Gini coefficient of square envelope spectrum (GISES) is utilized as the fitness function to adaptively optimize the key parameters of FMD through COA. Subsequently, the optimal modal components are selected from the decomposed modes by integrating the feature indicators of the envelope spectrum. Finally, the ITEO energy operator is employed to demodulate the selected modal components, using its effectiveness to enhance impact features to precisely identify the characteristic frequencies of bearing faults via the ITEO energy spectrum. Experimental findings indicate that the proposed methodology is effective in extracting fault signal characteristics in high-noise environments and accurately identifying the type of fault present.

References 

  • 1.
    Wang, C.; Wang, Z.D.; Ma, L.; et al. A novel contrastive adversarial network for minor-class data augmentation: Applications to pipeline fault diagnosis. Knowl. Based Syst., 2023, 271: 110516. doi: 10.1016/j.knosys.2023.110516
  • 2.
    Xue, Y.P.; Wen, C.B.; Wang, Z.D.; et al. A novel framework for motor bearing fault diagnosis based on multi-transformation domain and multi-source data. Knowl. Based Syst., 2024, 283: 111205. doi: 10.1016/j.knosys.2023.111205
  • 3.
    Wen, C.;B. Wu, X.B.; Wang, Z.D.; et al. A novel local feature fusion architecture for wind turbine pitch fault diagnosis with redundant feature screening. Complex Intell. Syst., 2024, 10: 8109−8125. doi: 10.1007/s40747-024-01584-z
  • 4.
    Chen, X.H.; Yang, R.; Xue, Y.H.; et al. TFPred: Learning discriminative representations from unlabeled data for few-label rotating machinery fault diagnosis. Control Eng. Pract., 2024, 146: 105900. doi: 10.1016/j.conengprac.2024.105900
  • 5.
    Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; John Wiley & Sons, Ltd:Chichester, 2011. doi: 10.1002/9780470977668.
  • 6.
    He, M.; He, D. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals. Neurocomputing, 2020, 396: 542−555. doi: 10.1016/j.neucom.2018.12.088
  • 7.
    Gómez-Luna, E.; Mayor, G.A.; Guerra, J.P.; et al. Application of wavelet transform to obtain the frequency response of a transformer from transient signals—part 1: Theoretical analysis. IEEE Trans. Power Delivery, 2013, 28: 1709−1714. doi: 10.1109/ TPWRD.2013.2262058
  • 8.
    Ge, H.Q.; Chen, G.B.; Yu, H.C.; et al. Theoretical analysis of empirical mode decomposition. Symmetry, 2018, 10: 623. doi: 10. 3390/sym10110623
  • 9.
    Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process., 2014, 62: 531−544. doi: 10.1109/TSP. 2013.2288675
  • 10.
    Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. In Handbook for Automatic Computation: Volume II: Linear Algebra; Wilkinson, J.H.; Reinsch, C., Eds.; Springer: Berlin, 1971; pp. 134–151. doi:10.1007/978-3-642-86940- 2_10
  • 11.
    Wang, Y.X.; Xiang, J.W.; Markert, R.; et al. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mech. Syst. Signal Process. 2016, 66–67, 679–698. doi:10.1016/j.ymssp.2015.04.039
  • 12.
    Chaudhuri, S.; Velmurugan, R.; Rameshan, R. Blind Image Deconvolution: Methods and Convergence; Springer: Cham, 2014. doi:10.1007/978-3-319- 10485-0
  • 13.
    Miao, Y.H.; Zhang, B.Y.; Li, C.H.; et al. Feature mode decomposition: New decomposition theory for rotating machinery fault diagnosis. IEEE Trans. Ind. Electron., 2022, 70: 1949−1960. doi: 10.1109/TIE.2022.3156156
  • 14.
    Jia, G.F.; Meng, Y.C. Study on fault feature extraction of rolling bearing based on improved WOA-FMD algorithm. Shock Vib., 2023, 2023: 5097144. doi: 10.1155/2023/5097144
  • 15.
    Li, C.; Zhou, J.; Wu, X.; et al. Adaptive feature mode decomposition method for bearing fault diagnosis under strong noise. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2025, 239: 508−519. doi: 10.1177/09544062241281840
  • 16.
    Zhong, X.Y.; Xia, T.Y.; Mei, Q. An effective centre frequency selection scheme based on variational mode extraction and its application to gear fault diagnosis. Insight Non Destr. Test. Cond. Monit., 2022, 64: 155−163. doi: 10.1784/insi.2022.64.3.155
  • 17.
    Zhou, Y.N.; Zhang, Y.; Yang, D.D.; et al. Pipeline signal feature extraction with improved VMD and multi-feature fusion. Syst. Sci. Control Eng., 2020, 8: 318−327. doi: 10.1080/21642583.2020.1765218
  • 18.
    Wu, J.M.; Wang, W.; Shang, T.T.; et al. A novel series arc fault detection method based on CEEMDAN and IFAW-1DCNN. IEEE Trans. Dielectr. Electr. Insul., 2024, 31: 1020−1029. doi: 10.1109/TDEI.2024.3360222
  • 19.
    Feldman, M. Hilbert transform in vibration analysis. Mech. Syst. Signal Process., 2011, 25: 735−802. doi: 10.1016/j.ymssp.2010.07. 018
  • 20.
    Kvedalen, E. Signal Processing Using the Teager Energy Operator and Other Nonlinear Operators. Master’s Thesis, University of Oslo, Oslo, Norway, 2003.
  • 21.
    Xu, Y.B.; Fan, F.; Jiang, X.K. A fast iterative filtering decomposition and symmetric difference analytic energy operator for bearing fault extraction. ISA Trans., 2021, 108: 317−332. doi: 10.1016/j.isatra.2020.08.015
  • 22.
    Akbari, M.A.; Zare, M.; Azizipanah-Abarghooee, R.; et al. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci. Rep., 2022, 12: 10953. doi: 10.1038/s41598-022- 14338-z
  • 23.
    Duan, T.S. Research on Intelligent Diagnosis Technology of Rotating Machinery by Fault Feature Extraction of Vibration Signal. Ph.D. Thesis, Mie University, Mie-ken, Japan, 2022.
Share this article:
How to Cite
Mao, C.; Wen, C. Fault Diagnosis Method for Rolling Bearings in High-Noise Environments Based on COA-FMD-ITEO. International Journal of Network Dynamics and Intelligence 2025, 4 (3), 100016. https://doi.org/10.53941/ijndi.2025.100016.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.