- 1.
Wang, C.; Wang, Z.D.; Ma, L.; et al. A novel contrastive adversarial network for minor-class data augmentation: Applications to pipeline fault diagnosis. Knowl. Based Syst., 2023, 271: 110516. doi: 10.1016/j.knosys.2023.110516
- 2.
Xue, Y.P.; Wen, C.B.; Wang, Z.D.; et al. A novel framework for motor bearing fault diagnosis based on multi-transformation domain and multi-source data. Knowl. Based Syst., 2024, 283: 111205. doi: 10.1016/j.knosys.2023.111205
- 3.
Wen, C.;B. Wu, X.B.; Wang, Z.D.; et al. A novel local feature fusion architecture for wind turbine pitch fault diagnosis with redundant feature screening. Complex Intell. Syst., 2024, 10: 8109−8125. doi: 10.1007/s40747-024-01584-z
- 4.
Chen, X.H.; Yang, R.; Xue, Y.H.; et al. TFPred: Learning discriminative representations from unlabeled data for few-label rotating machinery fault diagnosis. Control Eng. Pract., 2024, 146: 105900. doi: 10.1016/j.conengprac.2024.105900
- 5.
Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; John Wiley & Sons, Ltd:Chichester, 2011. doi: 10.1002/9780470977668.
- 6.
He, M.; He, D. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals. Neurocomputing, 2020, 396: 542−555. doi: 10.1016/j.neucom.2018.12.088
- 7.
Gómez-Luna, E.; Mayor, G.A.; Guerra, J.P.; et al. Application of wavelet transform to obtain the frequency response of a transformer from transient signals—part 1: Theoretical analysis. IEEE Trans. Power Delivery, 2013, 28: 1709−1714. doi: 10.1109/ TPWRD.2013.2262058
- 8.
Ge, H.Q.; Chen, G.B.; Yu, H.C.; et al. Theoretical analysis of empirical mode decomposition. Symmetry, 2018, 10: 623. doi: 10. 3390/sym10110623
- 9.
Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process., 2014, 62: 531−544. doi: 10.1109/TSP. 2013.2288675
- 10.
Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. In Handbook for Automatic Computation: Volume II: Linear Algebra; Wilkinson, J.H.; Reinsch, C., Eds.; Springer: Berlin, 1971; pp. 134–151. doi:10.1007/978-3-642-86940- 2_10
- 11.
Wang, Y.X.; Xiang, J.W.; Markert, R.; et al. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mech. Syst. Signal Process. 2016, 66–67, 679–698. doi:10.1016/j.ymssp.2015.04.039
- 12.
Chaudhuri, S.; Velmurugan, R.; Rameshan, R. Blind Image Deconvolution: Methods and Convergence; Springer: Cham, 2014. doi:10.1007/978-3-319- 10485-0
- 13.
Miao, Y.H.; Zhang, B.Y.; Li, C.H.; et al. Feature mode decomposition: New decomposition theory for rotating machinery fault diagnosis. IEEE Trans. Ind. Electron., 2022, 70: 1949−1960. doi: 10.1109/TIE.2022.3156156
- 14.
Jia, G.F.; Meng, Y.C. Study on fault feature extraction of rolling bearing based on improved WOA-FMD algorithm. Shock Vib., 2023, 2023: 5097144. doi: 10.1155/2023/5097144
- 15.
Li, C.; Zhou, J.; Wu, X.; et al. Adaptive feature mode decomposition method for bearing fault diagnosis under strong noise. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2025, 239: 508−519. doi: 10.1177/09544062241281840
- 16.
Zhong, X.Y.; Xia, T.Y.; Mei, Q. An effective centre frequency selection scheme based on variational mode extraction and its application to gear fault diagnosis. Insight Non Destr. Test. Cond. Monit., 2022, 64: 155−163. doi: 10.1784/insi.2022.64.3.155
- 17.
Zhou, Y.N.; Zhang, Y.; Yang, D.D.; et al. Pipeline signal feature extraction with improved VMD and multi-feature fusion. Syst. Sci. Control Eng., 2020, 8: 318−327. doi: 10.1080/21642583.2020.1765218
- 18.
Wu, J.M.; Wang, W.; Shang, T.T.; et al. A novel series arc fault detection method based on CEEMDAN and IFAW-1DCNN. IEEE Trans. Dielectr. Electr. Insul., 2024, 31: 1020−1029. doi: 10.1109/TDEI.2024.3360222
- 19.
Feldman, M. Hilbert transform in vibration analysis. Mech. Syst. Signal Process., 2011, 25: 735−802. doi: 10.1016/j.ymssp.2010.07. 018
- 20.
Kvedalen, E. Signal Processing Using the Teager Energy Operator and Other Nonlinear Operators. Master’s Thesis, University of Oslo, Oslo, Norway, 2003.
- 21.
Xu, Y.B.; Fan, F.; Jiang, X.K. A fast iterative filtering decomposition and symmetric difference analytic energy operator for bearing fault extraction. ISA Trans., 2021, 108: 317−332. doi: 10.1016/j.isatra.2020.08.015
- 22.
Akbari, M.A.; Zare, M.; Azizipanah-Abarghooee, R.; et al. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci. Rep., 2022, 12: 10953. doi: 10.1038/s41598-022- 14338-z
- 23.
Duan, T.S. Research on Intelligent Diagnosis Technology of Rotating Machinery by Fault Feature Extraction of Vibration Signal. Ph.D. Thesis, Mie University, Mie-ken, Japan, 2022.