2509001345
  • Open Access
  • Article

Robust H Estimation for 2D FMLSS Systems Under Asynchronous Multi-channel Delays: A Partition Reconstruction Approach

  • Yu Chen,   
  • Wei Wang *,   
  • Juanjuan Xu

Received: 08 May 2025 | Accepted: 02 Jul 2025 | Published: 17 Sep 2025

Abstract

This paper investigates the robust H estimation problem for a class of 2D FMLSS systems under asynchronous multi-channel delays. We overcame the substantial challenges caused by incomplete information due to external random perturbation and multi-channel delay. First, by employing partition reconstruction approach, the original delayed systems is transformed into an equivalent multi-channel observation delay-free systems. Then, by making two modifications to the quadratic performance function, an equivalence relation is established between the design of the H∞ filter and a minimization problem of an indefinite quadratic form. i) the first modification involves adding a random perturbation matrix term to the quadratic performance function, ensuring that the perturbation is simultaneously considered when the original system is dualized in line with the quadratic performance function; ii) the second modification replaces the initial observation and noise sequences in the quadratic performance function with reconstructed observation and noise sequences. This ensures the completeness of information in the estimation algorithm during real-time recursive computation. Then, an N-step robust H∞ filter is designed in the 2D Krein space stochastic system, and the necessary and sufficient conditions for its existence are provided. Finally, the effectiveness of the proposed recursive filtering algorithm is verified through a numerical example.

References 

  • 1.
    Ahn, C.K.; Wu, L.G.; Shi, P. Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica, 2016, 69: 356-363. doi: 10.1016/j.automatica.2016.03.006
  • 2.
    Chinimilli, P.T.; Redkar, S.; Sugar, T. A two-dimensional feature space-based approach for human locomotion recognition. IEEE Sens. J., 2019, 19: 4271-4282. doi: 10.1109/JSEN.2019.2895289
  • 3.
    Li, H.; Wang, S.Q.; Shi, H.Y.; et al. Two-dimensional iterative learning robust asynchronous switching predictive control for multiphase batch processes with time-varying delays. IEEE Trans. Syst. Man Cybern. Syst., 2023, 53: 6488-6502. doi: 10.1109/ TSMC.2023.3284078
  • 4.
    Dabkowski, P.; Galkowskiy, K.; Rogers, E.; et al. Iterative learning control based on relaxed 2-D systems stability criteria. IEEE Trans. Control Syst. Technol., 2013, 21: 1016-1023. doi: 10.1109/TCST.2012.2198477
  • 5.
    Luo, Y.Q.; Wang, Z.D.; Wei, G.L.; et al. Robust H∞ filtering for a class of two-dimensional uncertain fuzzy systems with randomly occurring mixed delays. IEEE Trans. Fuzzy Syst., 2017, 25: 70-83. doi: 10.1109/TFUZZ.2016.2556001
  • 6.
    Liu, Q.Y.; Wang, Z.D.; Dong, H.L.; et al. Remote estimation for energy harvesting systems under multiplicative noises: A binary encoding scheme with probabilistic bit flips. IEEE Trans. Autom. Control, 2023, 68: 343-354. doi: 10.1109/TAC.2022.3170540
  • 7.
    Zhao, D.; Ding, S.X.; Karimi, H.R.; et al. Robust H∞ filtering for two-dimensional uncertain linear discrete time-varying systems: A Krein space-based method. IEEE Trans. Autom. Control, 2019, 64: 5124-5131. doi: 10.1109/TAC.2019.2908699
  • 8.
    Xing, J.M.; Chi, R.H.; Lin, N. Adaptive iterative learning control for 2D nonlinear systems with nonrepetitive uncertainties. Int. J. Robust Nonlinear Control, 2021, 31: 1168-1180. doi: 10.1002/rnc.5347
  • 9.
    Ye, L.W.; Zhao, Z.G.; Liu, F. Optimal control of two-dimensional Roesser model: Solution based on reinforcement learning. IEEE Trans. Autom. Control, 2024, 69: 5424-5430. doi: 10.1109/TAC.2024.3357743
  • 10.
    Zhao, D.; Ahn, C.K.; Paszke, W.; et al. Fault diagnosability analysis of two-dimensional linear discrete systems. IEEE Trans. Autom. Control, 2021, 66: 826-832. doi: 10.1109/TAC.2020.2986054
  • 11.
    Roesser, R. A discrete state-space model for linear image processing. IEEE Trans. Autom. Control, 1975, 20: 1-10. doi: 10.1109/ TAC.1975.1100844
  • 12.
    Heath, W.P. Orthogonal functions for cross-directional control of Web forming processes. Automatica, 1996, 32: 183-198. doi: 10. 1016/0005- 1098(96)85548-8
  • 13.
    Lo, W.C.; Wang, L.; Li, B.W. Thermal transistor: Heat flux switching and modulating. J. Phys. Soc. Japan, 2008, 77: 054402. doi: 10.1143/jpsj.77.054402
  • 14.
    Bose, N.K. Multidimensional Systems Theory and Applications, 2nd ed.; Kluwer Academic Publishers: Dordrecht, 2003.
  • 15.
    Chen, B.; Hu, G.Q.; Ho, D.W.C.; et al. Distributed Kalman filtering for time-varying discrete sequential systems. Automatica, 2019, 99: 228-236. doi: 10.1016/j.automatica.2018.10.025
  • 16.
    Choi, H.D.; Ahn, C.K.; Karimi, H.R.; et al. Filtering of discrete-time switched neural networks ensuring exponential dissipative and l2-l∞ performances. IEEE Trans. Cybern., 2017, 47: 3195-3207. doi: 10.1109/TCYB.2017.2655725
  • 17.
    Wang, F.; Liang, J.L.; Liu, X.H. H∞ state estimation for time-varying networks with probabilistic delay in measurements. In Proceedings of the 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; IEEE: New York, 2016; pp. 1–6. doi:10.1109/IConAC.2016.7604885
  • 18.
    Wang, Y.A.; Shen, B.; Zou, L.; et al. A survey on recent advances in distributed filtering over sensor networks subject to communication constraints. Int. J. Network Dyn. Intell., 2023, 2: 100007. doi: 10.53941/ijndi0201007
  • 19.
    Wang, Y.; Liu, H.J.; Tan, H.L. An overview of filtering for sampled-data systems under communication constraints. Int. J. Network Dyn. Intell., 2023, 2: 100011. doi: 10.53941/ijndi.2023.100011
  • 20.
    Yi, X.J.; Yu, H.Y.; Fang, Z.Y.; et al. Probability-guaranteed state estimation for nonlinear delayed systems under mixed attacks. Int. J. Syst. Sci., 2023, 54: 2059-2071. doi: 10.1080/00207721.2023.2216274
  • 21.
    Zhu, K.Q.; Wang, Z.D.; Dong, H.L.; et al. Set-membership filtering for two-dimensional systems with dynamic event-triggered mechanism. Automatica, 2022, 143: 110416. doi: 10.1016/j.automatica.2022.110416
  • 22.
    Cheng, P.; Chen, H.T.; He, S.P.; et al. Asynchronous deconvolution filtering for 2-D Markov jump systems with packet loss compensation. IEEE Trans. Autom. Sci. Eng., 2024, 21: 4165-4176. doi: 10.1109/TASE.2023.3292891
  • 23.
    Song, J.; Wang, Z.D.; Niu, Y.G.; et al. Co-design of dissipative deconvolution filter and round-robin protocol for networked 2-D digital systems: Optimization and application. IEEE Trans. Syst. Man Cybern. Syst., 2023, 53: 6316-6328. doi: 10.1109/TSMC.2023. 3284223
  • 24.
    Zhao, D.; Wang, Y.Q.; Li, Y. Y.; et al. H∞ fault estimation for 2-D linear discrete time-varying systems based on Krein space method. IEEE Trans. Syst. Man Cybern. Syst., 2018, 48: 2070-2079. doi: 10.1109/TSMC.2017.2723623
  • 25.
    Cheng, P.; Wang, H.; Stojanovic, V.; et al. Asynchronous fault detection observer for 2-D Markov jump systems. IEEE Trans. Cybern., 2022, 52: 13623-13634. doi: 10.1109/TCYB.2021.3112699
  • 26.
    Li, D.H.; Liang, J.L.; Wang, F. Robust H∞ filtering for 2D systems with RON under the stochastic communication protocol. IET Control Theory Appl., 2020, 14: 2795-2804. doi: 10.1049/iet-cta.2019.0932
  • 27.
    Li, M.Q.; Chen, W.B.; Shao, Y. Mixed H∞-based finite-time passive filtering for a class of uncertain nonlinear singular systems. Opt. Control Appl. Methods, 2024, 45: 1122-1139. doi: 10.1002/oca.3092
  • 28.
    Yang, R.N.; Zheng, W. X. H∞ filtering for discrete-time 2-D switched systems: An extended average dwell time approach. Automatica, 2018, 98: 302-313. doi: 10.1016/j.automatica.2018.09.013
  • 29.
    Hassibi, B.; Sayed, A.H.; Kailath, T. Linear estimation in Krein spaces. I. Theory. IEEE Trans. Autom. Control, 1996, 41: 18-33. doi: 10.1109/9.481605
  • 30.
    Hassibi, B.; Sayed, A.H.; Kailath, T. Linear estimation in Krein spaces. II. Applications. IEEE Trans. Autom. Control, 1996, 41: 34-49. doi: 10.1109/9.481606
  • 31.
    Zhao, D.; Ding, S.X.; Wang, Y.Q.; et al. Krein-space based robust H∞ fault estimation for two-dimensional uncertain linear discrete time-varying systems. Syst. Control Lett., 2018, 115: 41-47. doi: 10.1016/j.sysconle.2018.03.005
  • 32.
    Wang, W.; Chen, Y.; Xu, J.J.; et al. Finite-horizon estimation for 2-D systems with time-correlated multiplicative noises: A recursive iterative coupled estimator design. Int. J. Robust Nonlinear Control, 2024, 34: 8013-8032. doi: 10.1002/rnc.7375
  • 33.
    Chen, H.W.; Wang, Z.D.; Shen, B.; et al. Distributed recursive filtering over sensor networks with nonlogarithmic sensor resolution. IEEE Trans. Autom. Control, 2022, 67: 5408-5415. doi: 10.1109/TAC.2021.3115473
  • 34.
    Wang, F.; Wang, Z.D.; Liang, J.L.; et al. Recursive filtering for two-dimensional systems with amplify-and-forward relays: Handling degraded measurements and dynamic biases. Inf. Fusion, 2024, 108: 102368. doi: 10.1016/j.inffus.2024.102368
  • 35.
    Wang, F.; Liang, J.L.; Lam, J.; et al. Robust filtering for 2-D systems with uncertain-variance noises and Weighted try-once-discard protocols. IEEE Trans. Syst. Man Cybern. Syst., 2023, 53: 2914-2924. doi: 10.1109/TSMC.2022.3219919
  • 36.
    Shen, B.; Wang, X.L.; Zou, L. Maximum correntropy Kalman filtering for non-Gaussian systems with state saturations and stochastic nonlinearities. IEEE/CAA J. Autom. Sin., 2023, 10: 1223-1233. doi: 10.1109/JAS.2023.123195
  • 37.
    Yang, R.; Ntogramatzidis, L.; Cantoni, M. On Kalman filtering for 2-D Fornasini-Marchesini models. In Proceeding International Workshop on Multidimensional (nD) Systems, Thessaloniki, Greece, 29 June–1 July 2009; IEEE: New York, 2009; pp. 1–8. doi:10.1109/NDS.2009.5195928
Share this article:
How to Cite
Chen, Y.; Wang, W.; Xu, J. Robust H Estimation for 2D FMLSS Systems Under Asynchronous Multi-channel Delays: A Partition Reconstruction Approach. International Journal of Network Dynamics and Intelligence 2025, 4 (3), 100017. https://doi.org/10.53941/ijndi.2025.100017.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.