- 1.
Abaspur Kazerouni, I.; Fitzgerald, L.; Dooly, G.; et al. A survey of state-of-the-art on visual SLAM. Expert Syst. Appl., 2022, 205: 117734. doi: 10.1016/j.eswa.2022.117734
- 2.
Sahili, A.R.; Hassan, S.; Sakhrieh, S.M.; et al. A survey of visual SLAM methods. IEEE Access, 2023, 11: 139643−139677. doi: 10. 1109/ACCESS.2023.3341489
- 3.
Yan, X.Q.; Mao, Y.Q.; Ye, Y.D.; et al. Cross-modal clustering with deep correlated information bottleneck method. IEEE Trans. Neural Netw. Learn. Syst., 2024, 35: 13508−13522. doi: 10.1109/TNNLS.2023.3269789
- 4.
Xie, T.; Sun, Q.H.; Sun, T.; et al. DVDS: A deep visual dynamic slam system. Expert Syst. Appl., 2025, 260: 125438. doi: 10.1016/j. eswa.2024.125438
- 5.
He, J.M.; Li, M.R.; Wang, Y.Y.; et al. OVD-SLAM: An online visual SLAM for dynamic environments. IEEE Sens. J., 2023, 23: 13210−13219. doi: 10.1109/JSEN.2023.3270534
- 6.
Hu, W.; Gao, X.; Cheung, G.; et al. Feature graph learning for 3D point cloud denoising. IEEE Trans. Signal Process., 2020, 68: 2841−2856. doi: 10.1109/TSP.2020.2978617
- 7.
Wen, S.H.; Li, X.F.; Liu, X.; et al. Dynamic SLAM: A visual SLAM in outdoor dynamic scenes. IEEE Trans. Instrum. Meas., 2023, 72: 5028911. doi: 10.1109/TIM.2023.3317378
- 8.
Sun, H.L.; Fan, Q.W.; Zhang, H.Q.; et al. A real-time visual SLAM based on semantic information and geometric information in dynamic environment. J. Real-Time Image Process., 2024, 21: 169. doi: 10.1007/s11554-024-01527-4
- 9.
Yi, J.Z.; Chen, A.B.; Cai, Z.X.; et al. Facial expression recognition of intercepted video sequences based on feature point movement trend and feature block texture variation. Appl. Soft Comput., 2019, 82: 105540. doi: 10.1016/j.asoc.2019.105540
- 10.
Lv, C.L.; Lin, W.S.; Zhao, B.Q. Intrinsic and isotropic resampling for 3D point clouds. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 45: 3274−3291. doi: 10.1109/TPAMI.2022.3185644
- 11.
Lee, O.; Joo, K.; Sim, J.Y. Learning-based reflection-aware virtual point removal for large-scale 3D point clouds. IEEE Robot. Autom. Lett., 2023, 8: 8510−8517. doi: 10.1109/LRA.2023.3329365
- 12.
Wang, J.W.; Zhuang, Y.; Liu, Y.S. FSS-NET: A fast search structure for 3D point clouds in deep learning. Int. J. Netw. Dyn. Intell., 2023, 2: 100005. doi: 10.53941/ijndi.2023.100005
- 13.
Li, R.H.; Wang, S.; Gu, D.B. Ongoing evolution of visual SLAM from geometry to deep learning: Challenges and opportunities. Cognit. Comput., 2018, 10: 875−889. doi: 10.1007/s12559-018-9591-8
- 14.
Qin, Y.; Yu, H.D. A review of visual SLAM with dynamic objects. Ind. Rob., 2023, 50: 1000−1010. doi: 10.1108/IR-07-2023-0162
- 15.
Li, W.Y.; Yang, F.W. Information fusion over network dynamics with unknown correlations: An overview. Int. J. Netw. Dyn. Intell., 2023, 2: 100003. doi: 10.53941/ijndi0201003
- 16.
Liu, F.Y.; Cao, Y.; Cheng, X.H.; et al. A visual SLAM method assisted by IMU and deep learning in indoor dynamic blurred scenes. Meas. Sci. Technol., 2024, 35: 025105. doi: 10.1088/1361-6501/ad03b9
- 17.
Zhang, X.Y.; Abd Rahman, A.H.; Qamar, F. Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes. PeerJ Comput. Sci., 2023, 9: e1628. doi: 10.7717/peerj-cs.1628
- 18.
Wu, W.X.; Guo, L.; Gao, H.L.; et al. YOLO-SLAM: A semantic SLAM system towards dynamic environment with geometric constraint. Neural Comput. Appl., 2022, 34: 6011−6026. doi: 10.1007/s00521-021-06764-3
- 19.
Pu, H.Y.; Luo, J.; Wang, G.; et al. Visual SLAM integration with semantic segmentation and deep learning: A review. IEEE Sen. J., 2023, 23: 22119−22138. doi: 10.1109/JSEN.2023.3306371
- 20.
Iqra; Giri, K.J. SO-YOLOV8: A novel deep learning-based approach for small object detection with yolo beyond coco. Expert Syst. Appl., 2025, 280: 127447. doi: 10.1016/j.eswa.2025.127447
- 21.
Yuan, Y.J.; Li, Y.; Fang, X.X.; et al. Automatic velocity picking based on improved mask R-CNN. IEEE Trans. Geosci. Remote Sens., 2023, 61: 5923312. doi: 10.1109/TGRS.2023.3335250
- 22.
He, K.M.; Gkioxari, G.; Dollár, P.; et al. Mask R-CNN. In Proceedings of2017 IEEE International Conference on Computer Vision, Venice, Italy, 22—29 October 2017; IEEE: New York, 2017, pp. 2980–2988. doi:10.1109/ICCV.2017.322
- 23.
Guo, C.S.; Cai, M.; Ying, N.; et al. ANMS: Attention-based non-maximum suppression. Multimed. Tools Appl., 2022, 81: 11205−11219. doi: 10.1007/s11042-022- 12142-5
- 24.
Tang, X. S.; Xie, X.L.; Hao, K.R.; et al. A line-segment-based non-maximum suppression method for accurate object detection. Knowl.-Based Syst., 2022, 251: 108885. doi: 10.1016/j.knosys.2022.108885