- 1.
Jiao, S.Y.; Shen, H.; Wei, Y.L.; et al. Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays. Appl. Math. Comput., 2018, 336: 338−350. doi: 10.1016/j.amc.2018.05.013
- 2.
Wang, M.Y.; Wang, H.Y.; Zheng, H. R. A mini review of node centrality metrics in biological networks. Int. J. Network Dyn. Intell., 2022, 1: 99−110. doi: 10.53941/ijndi0101009
- 3.
Wang, J.L.; Wu, H.Y.; Huang, T.W.; et al. Finite-time synchronization and H∞ synchronization for coupled neural networks with multistate or multiderivative couplings. IEEE Trans. Neural Networks Learning Syst., 2024, 35: 1628−1638. doi: 10.1109/TNNLS. 2022.3184487
- 4.
Wang, J.L.; Zhao, L.H. PD and PI control for passivity and synchronization of coupled neural networks with multi-weights. IEEE Trans. Network Sci. Eng., 2021, 8: 790−802. doi: 10.1109/TNSE.2021.3052889
- 5.
Chiu, K.S. Global exponential stability of bidirectional associative memory neural networks model with piecewise alternately advanced and retarded argument. Comp. Appl. Math., 2021, 40: 263. doi: 10.1007/s40314-021-01660-x
- 6.
Morocho-Cayamcela, M.E.; Lim, W. Pattern recognition of soldier uniforms with dilated convolutions and a modified encoder- decoder neural network architecture. Appl. Artif. Intell., 2021, 35: 476−487. doi: 10.1080/08839514.2021.1902124
- 7.
Cheng, J.; Wu, Y.Y.; Xiong, L.L.; et al. Resilient asynchronous state estimation of Markov switching neural networks: a hierarchical structure approach. Neural Networks, 2021, 135: 29−37. doi: 10.1016/j.neunet.2020.12.002
- 8.
Li, J.H.; Dong, H.L.; Wang, Z.D.; et al. Partial-neurons-based passivity-guaranteed state estimation for neural networks with randomly occurring time delays. IEEE Trans. Neural Networks Learning Syst., 2020, 31: 3747−3753. doi: 10.1109/TNNLS.2019. 2944552
- 9.
Qu, Y.; Pang, K. State estimation for a class of artificial neural networks subject to mixed attacks: a set-membership method. Neurocomputing, 2020, 411: 239−246. doi: 10.1016/j.neucom.2020.06.020
- 10.
Nagamani, G.; Shafiya, M.; Soundararajan, G. An LMI based state estimation for fractional-order memristive neural networks with leakage and time delays. Neural Process. Lett., 2020, 52: 2089−2108. doi: 10.1007/s11063-020- 10338-0
- 11.
Liu, S.; Wang, Z.D.; Shen, B.; et al. Partial-neurons-based state estimation for delayed neural networks with state-dependent noises under redundant channels. Inf. Sci., 2021, 547: 931−944. doi: 10.1016/j.ins.2020.08.047
- 12.
Tan, G.Q.; Wang, Z.S. Further result on H∞ performance state estimation of delayed static neural networks based on an improved reciprocally convex inequality. IEEE Trans. Circuits Syst. II: Express Br., 2020, 67: 1477−1481. doi: 10.1109/TCSII.2019.2941546
- 13.
Dinh, T.N.; Defoort, M. Fixed-time state estimation for a class of switched nonlinear time-varying systems. Asian J. Control, 2020, 22: 1782−1790. doi: 10.1002/asjc.2068
- 14.
Wang, L.C.; Wang, Z.D.; Wei, G.L.; et al. Variance-constrained H∞ state estimation for time-varying multi-rate systems with redundant channels: The finite-horizon case. Inf. Sci., 2019, 501: 222−235. doi: 10.1016/j.ins.2019.05.073
- 15.
Wang, F.; Wang, Z.D.; Liang, J.L.; et al. Resilient state estimation for 2-D time-varying systems with redundant channels: A variance-constrained approach. IEEE Trans. Cybern., 2019, 49: 2479−2489. doi: 10.1109/TCYB.2018.2821188
- 16.
Gao, Y.; Hu, J.; Yu, H.; et al. Variance-constrained resilient H∞ state estimation for time-varying neural networks with random saturation observation under uncertain occurrence probability. Neural Process. Lett., 2023, 55: 5031−5054. doi: 10.1007/s11063-022- 11078-z
- 17.
Gao, Y.; Hu, J.; Yu, H.; et al. Robust resilient H∞ state estimation for time-varying recurrent neural networks subject to probabilistic quantization under variance constraint. Int. J. Control Autom. Syst., 2023, 21: 684−695. doi: 10.1007/s12555-021-0676-x
- 18.
Wang, Y.C.; Wen, C.B.; Wu, X.B. Fault detection and isolation of floating wind turbine pitch system based on Kalman filter and multi-attention 1DCNN. Syst. Sci. Control Eng., 2024, 12: 2362169. doi: 10.1080/21642583.2024.2362169
- 19.
Caballero-Águila, R.; Hu, J.; Linares-Pérez, J. Filtering and smoothing estimation algorithms from uncertain nonlinear observations with time-correlated additive noise and random deception attacks. Int. J. Syst. Sci., 2024, 55: 2023−2035. doi: 10.1080/002077212024.2328781
- 20.
Pang, Z.H.; Fan, L.Z.; Sun, J.; et al. Detection of stealthy false data injection attacks against networked control systems via active data modification. Inf. Sci., 2021, 546: 192−205. doi: 10.1016/j.ins.2020.06.074
- 21.
Pang, Z.H.; Fan, L.Z.; Dong, Z.; et al. False data injection attacks against partial sensor measurements of networked control systems. IEEE Trans. Circuits Syst. II: Express Br., 2022, 69: 149−153. doi: 10.1109/TCSII.2021.3073724
- 22.
Yi, X.J.; Yu, H.Y.; Xu, T. Solving multi-objective weapon-target assignment considering reliability by improved MOEA/D-AM2M. Neurocomputing, 2024, 563: 126906. doi: 10.1016/j.neucom.2023.126906
- 23.
Cheng, J.; Park, J.H.; Wu, Z.G.; et al. Ultimate boundedness control for networked singularly perturbed systems with deception attacks: a Markovian communication protocol approach. IEEE Trans. Network Sci.Eng., 2022, 9: 445−456. doi: 10.1109/TNSE. 2021.3121414
- 24.
Song, H.Y.; Yao, H.Y.; Shi, P.; et al. Distributed secure state estimation of multi-sensor systems subject to two-channel hybrid attacks. IEEE Trans. Signal Inf. Process. Networks, 2022, 8: 1049−1058. doi: 10.1109/TSIPN.2023.3239681
- 25.
Zhang, B.; Rao, H.X.; Deng, Y.S.; et al. Finite horizon state estimation for time-varying neural networks with sensor failure and energy constraint. Neurocomputing, 2020, 372: 1−7. doi: 10.1016/j.neucom.2019.09.006
- 26.
Li, J.N.; Li, Z.J.; Xu, Y.F.; et al. Event-triggered non-fragile state estimation for discrete nonlinear Markov jump neural networks with sensor failures. Int. J. Control Autom. Syst., 2019, 17: 1131−1140. doi: 10.1007/s12555-018-0505-z
- 27.
Li, J.N.; Xu, Y.F.; Bao, W.D.; et al. Finite-time non-fragile state estimation for discrete neural networks with sensor failures, time- varying delays and randomly occurring sensor nonlinearity. J. Franklin Inst., 2019, 356: 1566−1589. doi: 10.1016/j.jfranklin.2018.10. 032
- 28.
Zhu, Q.X.; Huang, T. W. H∞ control of stochastic networked control systems with time-varying delays: The event-triggered sampling case. Int. J. Robust Nonlinear Control, 2021, 31: 9767−9781. doi: 10.1002/rnc.5798
- 29.
Yi, X.J.; Xu, T. Distributed event-triggered estimation for dynamic average consensus: A perturbation-injected privacy-preservation scheme. Inf. Fusion, 2024, 108: 102396. doi: 10.1016/j.inffus.2024.102396
- 30.
Li, Y.Y.; Liu, S.; Zhao, D.; et al. Event-triggered fault estimation for discrete time-varying systems subject to sector-bounded nonlinearity: A Krein space based approach. Int. J. Robust Nonlinear Control, 2021, 31: 5360−5380. doi: 10.1002/rnc.5545
- 31.
Li, C.Y.; Liu, Y.F.; Gao, M.; et al. Fault-tolerant formation consensus control for time-varying multi-agent systems with stochastic communication protocol. Int. J. Network Dyn. Intell., 2024, 3: 100004. doi: 10.53941/ijndi.2024.100004
- 32.
Wang, W.; Wang, M. Adaptive neural event-triggered output-feedback optimal tracking control for discrete-time pure-feedback nonlinear systems. Int. J. Network Dyn. Intell., 2024, 3: 100010. doi: 10.53941/ijndi.2024.100010
- 33.
Zhang, R.; Liu, H.J.; Liu, Y.F.; et al. Dynamic event-triggered state estimation for discrete-time delayed switched neural networks with constrained bit rate. Syst. Sci. Control Eng., 2024, 12: 2334304. doi: 10.1080/21642583.2024.2334304
- 34.
Cui, G.F.; Wu, L.B.; Wu, M. Adaptive event-triggered fault-tolerant control for leader-following consensus of multi-agent systems. Int. J. Syst. Sci., 2024, 55: 3291−3303. doi: 10.1080/00207721.2024.2367074
- 35.
Cong, G.; Han, F.; Li, J.H.; et al. Event-triggered distributed filtering for discrete-time systems with integral measurements. Syst. Sci. Control Eng., 2021, 9: 272−282. doi: 10.1080/21642583.2021.1901157
- 36.
Sun, Y.; Tian, X.; Wei, G.L. Finite-time distributed resilient state estimation subject to hybrid cyber-attacks: A new dynamic event triggered case. Int. J. Syst. Sci., 2022, 53: 2832−2844. doi: 10.1080/00207721.2022.2083256
- 37.
Song, H.Y.; Zhang, W.A.; Yu, L.; et al. Multisensor-based periodic estimation in sensor networks with transmission constraint and periodic mixed storage. IEEE Trans. Cybern., 2017, 47: 4367−4379. doi: 10.1109/TCYB.2016.2609503
- 38.
Meng, X.Y.; Chen, Y.; Ma, L.F.; et al. Protocol-based variance-constrained distributed secure filtering with measurement censoring. Int. J. Syst. Sci., 2022, 53: 3322−3338. doi: 10.1080/00207721.2022.2080297
- 39.
Liu, H.J.; Wang, Z.D.; Fei, W. Y.; et al. H∞ and ℓ2-ℓ∞ state estimation for delayed memristive neural networks on finite horizon: The Round-Robin protocol. Neural Networks, 2020, 132: 121−130. doi: 10.1016/j.neunet.2020.08.006
- 40.
Qi, L.X.; Shi, K.B.; Yang, C.D.; et al. Mean square stabilization of neural networks with weighted try once discard protocol and state observer. Neural Process. Lett., 2021, 53: 829−842. doi: 10.1007/s11063-020- 10409-2
- 41.
Zhang, H.X.; Hu, J.; Liu, H.J.; et al. Recursive state estimation for time-varying complex networks subject to missing measurements and stochastic inner coupling under random access protocol. Neurocomputing, 2019, 346: 48−57. doi: 10.1016/j.neucom.2018.07. 086
- 42.
Alsaadi, F.E.; Wang, Z.D.; Luo, Y. Q.; et al. H∞ state estimation for BAM neural networks with binary mode switching and distributed leakage delays under periodic scheduling protocol. IEEE Trans. Neural Networks Learning Syst., 2022, 33: 4160−4172. doi: 10.1109/TNNLS.2021.3055942
- 43.
Zou, C.; Li, B.; Du, S. S.; et al. H∞ state estimation for round-robin protocol-based Markovian jumping neural networks with mixed time delays. Neural Process. Lett., 2021, 53: 4313−4330. doi: 10.1007/s11063-021- 10598-4
- 44.
Liu, H.J.; Wang, Z.D.; Fei, W.Y.; et al. On finite-horizon H∞ state estimation for discrete-time delayed memristive neural networks under stochastic communication protocol. Inf. Sci., 2021, 555: 280−292. doi: 10.1016/j.ins.2020.11.002
- 45.
Tabbara, M.; Nesic, D. Input-output stability of networked control systems with stochastic protocols and channels. IEEE Trans. Automat. Control, 2008, 53: 1160−1175. doi: 10.1109/TAC.2008.923691