2509001359
  • Open Access
  • Article

Probability-Guaranteed Consensus Control for Nonlinear Multi-Agent Systems Under Bit Flips

  • Shuo Yuan,   
  • Lifeng Ma,   
  • Chen Gao *

Received: 26 May 2025 | Revised: 02 Jul 2025 | Published: 18 Sep 2025

Abstract

In this paper, the consensus control problem for discrete multi-agent systems is investigated in the presence of bit flips. First, a bit-rate allocation model with a finite number of bytes, together with an encoding-decoding scheme, is constructed to depict the constraints of bandwidth limitations. Then, a Bernoulli distribution is introduced to characterize the stochastic bit flips, while the impacts of bit flips on encoding-decoding processes are systematically analyzed by leveraging stochastic analysis theory. A novel control framework is proposed within a probabilistic ellipsoidal constraint, ensuring robustness against bit errors and nonlinear dynamics. By virtue of linear matrix inequalities (LMIs), sufficient conditions for the controller are derived to ensure probability-guaranteed consensus. Finally, the effectiveness of the designed controller is illustrated via numerical simulations, confirming its practical applicability in networked control systems with unreliable communication channels.

References 

  • 1.
    van den Broek, B.; Wiegerinck, W.; Kappen, B. Graphical model inference in optimal control of stochastic multi-agent systems. J. Artif. Intell. Res., 2008, 32: 95−122. doi: 10.1613/jair.2473
  • 2.
    Cai, Y.Y.; Yang, X.B.; Yang, Y.; et al. Leader-following privacy-preserving consensus control of nonlinear multi-agent systems: A state decomposition approach. Int. J. Syst. Sci., 2025, 56: 2284−2295. doi: 10.1080/00207721.2024.2445726
  • 3.
    Ding, L.; Han, Q.L.; Ge, X.H.; et al. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybern., 2018, 48: 1110−1123. doi: 10.1109/TCYB.2017.2771560
  • 4.
    Wang, W.; Ma, L.F.; Rui, Q.Q.; et al. A survey on privacy-preserving control and filtering of networked control systems. Int. J. Syst. Sci., 2024, 55: 2269−2288. doi: 10.1080/00207721.2024.2343734
  • 5.
    Guo, J.F.; Qian, W.; Wu, Y.M. Consensus of second-order multi-agent systems based on PIDD-like control protocol with time delay. Neurocomputing, 2025, 618: 129072. doi: 10.1016/j.neucom.2024.129072
  • 6.
    Li, H.F.; Li, M. A time-varying gain method to consensus control of high-order nonlinear multi-agent systems with input saturations. Int. J. Syst. Sci., 2025, 56: 2357−2369. doi: 10.1080/00207721.2024.2447881
  • 7.
    Ma, L.F.; Wang, Z.D.; Han, Q.L.; et al. Consensus control of stochastic multi-agent systems: A survey. Sci. China Inf. Sci., 2017, 60: 120201. doi: 10.1007/s11432-017-9169-4
  • 8.
    Zhang, C.J.; Ji, L.H.; Yang, S.S.; et al. Data-driven distributed output consensus control for multi-agent systems with unknown internal state. Neurocomputing, 2025, 615: 128868. doi: 10.1016/j.neucom.2024.128868
  • 9.
    Zou, L.; Liu, X.B.; Zhang, X.Y.; et al. Resilient consensus for multi-agent systems under distributed denial-of-service attacks: A graph-based approach. J. Control Decis. 2024, in press. doi: 10.1080/23307706.2024.2442464.
  • 10.
    Wang, B.C.; Zhang, J.F. Distributed output feedback control of Markov jump multi-agent systems. Automatica, 2013, 49: 1397−1402. doi: 10.1016/j.automatica.2013.01.063
  • 11.
    Yu, W.W.; Ren, W.; Zheng, W.X.; et al. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. Automatica, 2013, 49: 2107−2115. doi: 10.1016/j.automatica.2013.03.005
  • 12.
    Kang, L.F.; Ji, Z.J.; Liu, Y.G.; et al. Consensus of stochastic multi-agent systems with time-delay and Markov jump. Int. J. Syst. Sci., 2024, 55: 1959−1979. doi: 10.1080/00207721.2024.2328073
  • 13.
    Ma, Y.Z.; Dong, X.X. Leader-following mean square consensus of stochastic switched multi-agent systems with event-triggered control. Int. J. Syst. Sci., 2024, 55: 2036−2049. doi: 10.1080/00207721.2024.2328785
  • 14.
    Zhao, N.; Zhan, X.S.; Wu, J.; et al. Guaranteed-performance consensus control for multi-agent systems with external disturbances via event-triggered strategy. Neurocomputing, 2024, 574: 127268. doi: 10.1016/j.neucom.2024.127268
  • 15.
    Han, F.; Liu, J.H.; Li, J.H.; et al. Consensus control for multi-rate multi-agent systems with fading measurements: The dynamic event-triggered case. Syst. Sci. Control Eng., 2023, 11: 2158959. doi: 10.1080/21642583.2022.2158959
  • 16.
    Li, W.Q.; Xie, L.H.; Zhang, J.F. Containment control of leader-following multi-agent systems with Markovian switching network topologies and measurement noises. Automatica, 2015, 51: 263−267. doi: 10.1016/j.automatica.2014.10.070
  • 17.
    Chen, J.C.; Sun, Q.; Shi, Y. Stochastic self-triggered MPC for linear constrained systems under additive uncertainty and chance constraints. Inf. Sci., 2018, 459: 198−210. doi: 10.1016/j.ins.2018.05.021
  • 18.
    Muntwiler, S.; Wabersich, K.P.; Hewing, L.; et al. Data-driven distributed stochastic model predictive control with closed-loop chance constraint satisfaction. In Proceedings of 2021 European Control Conference (ECC), Delft, Netherlands, 29 June–2 July 2021; IEEE: New York, 2021; pp. 210–215. doi: 10.23919/ECC54610.2021.9655214.
  • 19.
    Coulson, J.; Lygeros, J.; Dorfler, F. Distributionally robust chance constrained data-enabled predictive control. IEEE Trans. Automat. Contr., 2022, 67: 3289−3304. doi: 10.1109/TAC.2021.3097706
  • 20.
    Zhang, W.J.; Liang, Y.; Wang, B.C. Differentially private coordination of second-order multi-agent systems via dynamic encoding- decoding. In Proceedings of the 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; IEEE: New York, 2021; pp. 5332–5337. doi: 10.23919/CCC52363.2021.9550215.
  • 21.
    Meng, Y.; Li, T.; Zhang, J.F. Output feedback quantized observer-based synchronization of linear multi-agent systems over jointly connected topologies. Int. J. Robust Nonlinear Control, 2016, 26: 2378−2400. doi: 10.1002/rnc.3453
  • 22.
    Wu, J.; Li, H.Q.; Han, Q.; et al. Leader-following consensus of nonlinear discrete-time multi-agent systems with limited bandwidth and switching topologies. ISA Transactions, 2020, 99: 139−147. doi: 10.1016/j.isatra.2019.10.002
Share this article:
How to Cite
Yuan, S.; Ma, L.; Gao, C. Probability-Guaranteed Consensus Control for Nonlinear Multi-Agent Systems Under Bit Flips. International Journal of Network Dynamics and Intelligence 2025, 4 (3), 100020. https://doi.org/10.53941/ijndi.2025.100020.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.