2509001373
  • Open Access
  • Article

Recursive Filtering for Nonlinear Systems with Relay Communication, Energy Harvesting and Correlated Noises

  • Shipei Cai 1,   
  • Jinling Liang 2, *

Received: 05 Feb 2025 | Accepted: 30 Mar 2025 | Published: 19 Sep 2025

Abstract

In this paper, the recursive filtering problem is investigated for stochastic nonlinear systems with relay communication, energy harvesting and correlated noises. The relay node receives signals transmitted from the sensor, then amplifies and forwards these signals to the filter. The transmission power of the sensor and the relay node is characterized by random variables obeying certain probability distribution. The energy harvesting technique is also employed to sustain the operation of both the sensor and the relay node, where the corresponding energy harvesting models are established to describe evolution of their energy levels. The process and the measurement noises are one-step autocorrelated and two-step cross-correlated, respectively. Furthermore, the channel noises are considered as one-step autocorrelated due to influence of the communication environment. The objective of this paper is to establish a recursive filter to address the state estimation problem in the presence of relay communication, energy harvesting, and correlated noises within a unified framework. By means of recursive computation and stochastic analysis, a certain upper bound is guaranteed on the second moment matrix of the filtering error, and then minimized by appropriately designed filter gain at each time step. In addition, the boundedness issue is also discussed to assess the filtering performance. Finally, two examples are presented to illustrate the effectiveness and practicability of the designed filtering strategy.

References 

  • 1.
    Chang, S.Y.; Wu, H.C. Tensor Kalman filter and its applications. IEEE Trans. Knowl. DataEng., 2023, 35: 6435−6448. doi: 10. 1109/TKDE.2022.3169129
  • 2.
    Zhong, Y.L.; Chen, X.Y.; Zhou, Y.C.; et al. Adaptive particle filtering with variational Bayesian and its application for INS/GPS integrated navigation. IEEE Sens. J., 2023, 23: 19757−19770. doi: 10.1109/JSEN.2023.3296744
  • 3.
    Blair, W.D.; Bar-Shalom, Y. MSE design of nearly constant velocity Kalman filters for tracking targets with deterministic maneuvers. IEEE Trans. Aerosp. Electron. Syst., 2023, 59: 4180−4191. doi: 10.1109/TAES.2023.3241076
  • 4.
    Wang, Y.; Liu, H.J.; Tan, H.L. An overview of filtering for sampled-data systems under communication constraints. Int. J. Netw. Dyn. Intell., 2023, 2: 100011. doi: 10.53941/ijndi.2023.100011
  • 5.
    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses. Inf. Fusion, 2017, 34: 70−79. doi: 10.1016/j.inffus.2016.06.008
  • 6.
    Su, X.J.; Shi, P.; Wu, L.G.; et al. Fault detection filtering for nonlinear switched stochastic systems. IEEE Trans. Autom. Control, 2016, 61: 1310−1315. doi: 10.1109/TAC.2015.2465091
  • 7.
    Hu, J.; Li, J.X.; Yan, H.C.; et al. Optimized distributed filtering for saturated systems with amplify-and-forward relays over sensor networks: A dynamic event-triggered approach. IEEE Trans. Neural Netw. Learn. Syst., 2024, 35: 17742−17753. doi: 10.1109/ TNNLS.2023.3308192
  • 8.
    Qu, B.G.; Peng, D.G.; Shen, Y.X.; et al. A survey on recent advances on dynamic state estimation for power systems. Int. J. Syst. Sci., 2024, 55: 3305−3321. doi: 10.1080/00207721.2024.2427846
  • 9.
    Zhao, L.; Sun, L.F.; Hu, J. Distributed nonlinear fusion filtering for multi-sensor networked systems with random varying parameter matrix and missing measurements. Neurocomputing, 2024, 610: 128491. doi: 10.1016/j.neucom.2024.128491
  • 10.
    Du, C.L.; Xie, L.H.; Soh, Y. C. H∞ filtering of 2-D discrete systems. IEEE Trans. Signal Process., 2000, 48: 1760−1768. doi: 10. 1109/78.845933
  • 11.
    Caballero-Águila, R.; Hermoso-Carazo, A.; Jiménez-López, J.D.; et al. Recursive estimation of discrete-time signals from nonlinear randomly delayed observations. Comput. Math. Appl., 2009, 58: 1160−1168. doi: 10.1016/j.camwa.2009.06.046
  • 12.
    Hermoso-Carazo, A.; Linares-Pérez, J. Nonlinear estimation applying an unscented transformation in systems with correlated uncertain observations. Appl. Math. Comput., 2011, 217: 7998−8009. doi: 10.1016/j.amc.2011.02.104
  • 13.
    Yaz, E.E.; Yaz, Y.I. State estimation of uncertain nonlinear stochastic systems with general criteria. Appl. Math. Lett., 2001, 14: 605−610. doi: 10.1016/S0893-9659(00)00201-9
  • 14.
    Hu, J.; Wang, Z.D.; Shen, B.; et al. Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays. IEEE Trans. Signal Process., 2013, 61: 1230−1238. doi: 10.1109/TSP.2012.2232660
  • 15.
    Wang, Y.A.; Shen, B.; Zou, L.; et al. A survey on recent advances in distributed filtering over sensor networks subject to communication constraints. Int. J. Netw. Dyn. Intell., 2023, 2: 100007. doi: 10.53941/ijndi0201007
  • 16.
    Yin, X.; Zhang, Q.C.; Wang, H.; et al. RBFNN-based minimum entropy filtering for a class of stochastic nonlinear systems. IEEE Trans. Autom. Control, 2020, 65: 376−381. doi: 10.1109/TAC.2019.2914257
  • 17.
    Liu, Y.; Wang, Z.D.; Liu, C.J.; et al. Auxiliary particle filtering over sensor networks under protocols of amplify-and-forward and decode-and-forward relays. IEEE Trans. Signal Inf. Process. Netw., 2022, 8: 883−893. doi: 10.1109/TSIPN.2022.3212318
  • 18.
    Nabar, R.U.; Bolcskei, H.; Kneubuhler, F.W. Fading relay channels: Performance limits and space-time signal design. IEEE J. Sel. Areas Commun., 2004, 22: 1099−1109. doi: 10.1109/JSAC.2004.830922
  • 19.
    Xu, Y.; Li, B.; Zhao, N.; et al. Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m fading channels. IEEE Trans. Commun., 2021, 69: 207−222. doi: 10.1109/TCOMM.2020.3025555
  • 20.
    Nguyen, B.C.; Hoang, T.M.; Dung, L.T. Performance analysis of vehicle-to-vehicle communication with full-duplex amplify-and- forward relay over double-Rayleigh fading channels. Veh. Commun., 2019, 19: 100166. doi: 10.1016/j.vehcom.2019.100166
  • 21.
    Jiang, L.S.; Jafarkhani, H. mmWave amplify-and-forward MIMO relay networks with hybrid precoding/combining design. IEEE Trans. Wirel. Commun. 2020, 19, 1333–1346. doi:10.1109/TWC.2019.2953032
  • 22.
    Gupta, A.; Sellathurai, M. End-to-end learning-based framework for amplify-and-forward relay networks. IEEE Access, 2021, 9: 81660−81677. doi: 10.1109/ACCESS.2021.3085901
  • 23.
    Dai, D.Y.; Li, J.H.; Song, Y.H.; et al. Event-based recursive filtering for nonlinear bias-corrupted systems with amplify-and-forward relays. Syst. Sci. Control Eng., 2024, 12: 2332419. doi: 10.1080/21642583.2024.2332419
  • 24.
    Zhang, Y.; Wang, Z.D.; Zou, L.; et al. Event-based finite-time filtering for multirate systems with fading measurements. IEEE Trans. Aerosp. Electron. Syst., 2017, 53: 1431−1441. doi: 10.1109/TAES.2017.2671498
  • 25.
    Shen, B.; Wang, Z.D.; Tan, H.L.; et al. Robust fusion filtering over multisensor systems with energy harvesting constraints. Automatica, 2021, 131: 109782. doi: 10.1016/j.automatica.2021.109782
  • 26.
    Estrada-Lopez, J.J.; Abuellil, A.; Costilla-Reyes, A.; et al. A fully integrated maximum power tracking combiner for energy harvesting IoT applications. IEEE Trans. Ind. Electron., 2020, 67: 2744−2754. doi: 10.1109/TIE.2019.2907449
  • 27.
    Pehlivan, I.; Ergen, S.C. Scheduling of energy harvesting for MIMO wireless powered communication networks. IEEE Commun. Lett., 2019, 23: 152−155. doi: 10.1109/LCOMM.2018.2881180
  • 28.
    Khoshabi Nobar, S.; Ahmed, M.H.; Morgan, Y.; et al. Performance analysis of LTE random access protocol with an energy harvesting M2M scenario. IEEE Internet Things J., 2020, 7: 893−905. doi: 10.1109/JIOT.2019.2946295
  • 29.
    Leong, A.S.; Dey, S.; Quevedo, D.E. Transmission scheduling for remote state estimation and control with an energy harvesting sensor. Automatica, 2018, 91: 54−60. doi: 10.1016/j.automatica.2018.01.027
  • 30.
    Hu, J.; Wang, Z.D.; Gao, H.J. Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises. Automatica, 2013, 49: 3440−3448. doi: 10.1016/j.automatica.2013.08.021
  • 31.
    Song, E.B.; Zhu, Y.M.; Zhou, J.; et al. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica, 2007, 43: 1450−1456. doi: 10.1016/j.automatica.2007.01.010
  • 32.
    Feng, J.X.; Wang, Z.D.; Zeng, M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises. Inf. Fusion, 2013, 14: 78−86. doi: 10.1016/j.inffus.2011.09.004
  • 33.
    Rogers, S.R. Alpha-beta filter with correlated measurement noise. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 592–594. doi:10.1109/TAES.1987.310893
  • 34.
    Sun, S.L. Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises. IEEE Trans. Signal Process., 2020, 68: 1064−1074. doi: 10.1109/TSP.2020.2967180
  • 35.
    Hao, G.; Sun, S.L. Distributed fusion filter for nonlinear multi-sensor systems with correlated noises. IEEE Access, 2020, 8: 39548−39560. doi: 10.1109/ACCESS.2020.2976201
  • 36.
    Makinen, Y.; Azzari, L.; Foi, A. Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching. IEEE Trans. Image Process., 2020, 29: 8339−8354. doi: 10.1109/TIP.2020.3014721
  • 37.
    Zhao, Y.B.; Liu, G.P.; Rees, D. Design of a packet-based control framework for networked control systems. IEEE Trans. Control Syst. Technol., 2009, 17: 859−865. doi: 10.1109/TCST.2008.2010946
Share this article:
How to Cite
Cai, S.; Liang, J. Recursive Filtering for Nonlinear Systems with Relay Communication, Energy Harvesting and Correlated Noises. International Journal of Network Dynamics and Intelligence 2025, 4 (3), 100021. https://doi.org/10.53941/ijndi.2025.100021.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.