- 1.
Chang, S.Y.; Wu, H.C. Tensor Kalman filter and its applications. IEEE Trans. Knowl. DataEng., 2023, 35: 6435−6448. doi: 10. 1109/TKDE.2022.3169129
- 2.
Zhong, Y.L.; Chen, X.Y.; Zhou, Y.C.; et al. Adaptive particle filtering with variational Bayesian and its application for INS/GPS integrated navigation. IEEE Sens. J., 2023, 23: 19757−19770. doi: 10.1109/JSEN.2023.3296744
- 3.
Blair, W.D.; Bar-Shalom, Y. MSE design of nearly constant velocity Kalman filters for tracking targets with deterministic maneuvers. IEEE Trans. Aerosp. Electron. Syst., 2023, 59: 4180−4191. doi: 10.1109/TAES.2023.3241076
- 4.
Wang, Y.; Liu, H.J.; Tan, H.L. An overview of filtering for sampled-data systems under communication constraints. Int. J. Netw. Dyn. Intell., 2023, 2: 100011. doi: 10.53941/ijndi.2023.100011
- 5.
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses. Inf. Fusion, 2017, 34: 70−79. doi: 10.1016/j.inffus.2016.06.008
- 6.
Su, X.J.; Shi, P.; Wu, L.G.; et al. Fault detection filtering for nonlinear switched stochastic systems. IEEE Trans. Autom. Control, 2016, 61: 1310−1315. doi: 10.1109/TAC.2015.2465091
- 7.
Hu, J.; Li, J.X.; Yan, H.C.; et al. Optimized distributed filtering for saturated systems with amplify-and-forward relays over sensor networks: A dynamic event-triggered approach. IEEE Trans. Neural Netw. Learn. Syst., 2024, 35: 17742−17753. doi: 10.1109/ TNNLS.2023.3308192
- 8.
Qu, B.G.; Peng, D.G.; Shen, Y.X.; et al. A survey on recent advances on dynamic state estimation for power systems. Int. J. Syst. Sci., 2024, 55: 3305−3321. doi: 10.1080/00207721.2024.2427846
- 9.
Zhao, L.; Sun, L.F.; Hu, J. Distributed nonlinear fusion filtering for multi-sensor networked systems with random varying parameter matrix and missing measurements. Neurocomputing, 2024, 610: 128491. doi: 10.1016/j.neucom.2024.128491
- 10.
Du, C.L.; Xie, L.H.; Soh, Y. C. H∞ filtering of 2-D discrete systems. IEEE Trans. Signal Process., 2000, 48: 1760−1768. doi: 10. 1109/78.845933
- 11.
Caballero-Águila, R.; Hermoso-Carazo, A.; Jiménez-López, J.D.; et al. Recursive estimation of discrete-time signals from nonlinear randomly delayed observations. Comput. Math. Appl., 2009, 58: 1160−1168. doi: 10.1016/j.camwa.2009.06.046
- 12.
Hermoso-Carazo, A.; Linares-Pérez, J. Nonlinear estimation applying an unscented transformation in systems with correlated uncertain observations. Appl. Math. Comput., 2011, 217: 7998−8009. doi: 10.1016/j.amc.2011.02.104
- 13.
Yaz, E.E.; Yaz, Y.I. State estimation of uncertain nonlinear stochastic systems with general criteria. Appl. Math. Lett., 2001, 14: 605−610. doi: 10.1016/S0893-9659(00)00201-9
- 14.
Hu, J.; Wang, Z.D.; Shen, B.; et al. Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays. IEEE Trans. Signal Process., 2013, 61: 1230−1238. doi: 10.1109/TSP.2012.2232660
- 15.
Wang, Y.A.; Shen, B.; Zou, L.; et al. A survey on recent advances in distributed filtering over sensor networks subject to communication constraints. Int. J. Netw. Dyn. Intell., 2023, 2: 100007. doi: 10.53941/ijndi0201007
- 16.
Yin, X.; Zhang, Q.C.; Wang, H.; et al. RBFNN-based minimum entropy filtering for a class of stochastic nonlinear systems. IEEE Trans. Autom. Control, 2020, 65: 376−381. doi: 10.1109/TAC.2019.2914257
- 17.
Liu, Y.; Wang, Z.D.; Liu, C.J.; et al. Auxiliary particle filtering over sensor networks under protocols of amplify-and-forward and decode-and-forward relays. IEEE Trans. Signal Inf. Process. Netw., 2022, 8: 883−893. doi: 10.1109/TSIPN.2022.3212318
- 18.
Nabar, R.U.; Bolcskei, H.; Kneubuhler, F.W. Fading relay channels: Performance limits and space-time signal design. IEEE J. Sel. Areas Commun., 2004, 22: 1099−1109. doi: 10.1109/JSAC.2004.830922
- 19.
Xu, Y.; Li, B.; Zhao, N.; et al. Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m fading channels. IEEE Trans. Commun., 2021, 69: 207−222. doi: 10.1109/TCOMM.2020.3025555
- 20.
Nguyen, B.C.; Hoang, T.M.; Dung, L.T. Performance analysis of vehicle-to-vehicle communication with full-duplex amplify-and- forward relay over double-Rayleigh fading channels. Veh. Commun., 2019, 19: 100166. doi: 10.1016/j.vehcom.2019.100166
- 21.
Jiang, L.S.; Jafarkhani, H. mmWave amplify-and-forward MIMO relay networks with hybrid precoding/combining design. IEEE Trans. Wirel. Commun. 2020, 19, 1333–1346. doi:10.1109/TWC.2019.2953032
- 22.
Gupta, A.; Sellathurai, M. End-to-end learning-based framework for amplify-and-forward relay networks. IEEE Access, 2021, 9: 81660−81677. doi: 10.1109/ACCESS.2021.3085901
- 23.
Dai, D.Y.; Li, J.H.; Song, Y.H.; et al. Event-based recursive filtering for nonlinear bias-corrupted systems with amplify-and-forward relays. Syst. Sci. Control Eng., 2024, 12: 2332419. doi: 10.1080/21642583.2024.2332419
- 24.
Zhang, Y.; Wang, Z.D.; Zou, L.; et al. Event-based finite-time filtering for multirate systems with fading measurements. IEEE Trans. Aerosp. Electron. Syst., 2017, 53: 1431−1441. doi: 10.1109/TAES.2017.2671498
- 25.
Shen, B.; Wang, Z.D.; Tan, H.L.; et al. Robust fusion filtering over multisensor systems with energy harvesting constraints. Automatica, 2021, 131: 109782. doi: 10.1016/j.automatica.2021.109782
- 26.
Estrada-Lopez, J.J.; Abuellil, A.; Costilla-Reyes, A.; et al. A fully integrated maximum power tracking combiner for energy harvesting IoT applications. IEEE Trans. Ind. Electron., 2020, 67: 2744−2754. doi: 10.1109/TIE.2019.2907449
- 27.
Pehlivan, I.; Ergen, S.C. Scheduling of energy harvesting for MIMO wireless powered communication networks. IEEE Commun. Lett., 2019, 23: 152−155. doi: 10.1109/LCOMM.2018.2881180
- 28.
Khoshabi Nobar, S.; Ahmed, M.H.; Morgan, Y.; et al. Performance analysis of LTE random access protocol with an energy harvesting M2M scenario. IEEE Internet Things J., 2020, 7: 893−905. doi: 10.1109/JIOT.2019.2946295
- 29.
Leong, A.S.; Dey, S.; Quevedo, D.E. Transmission scheduling for remote state estimation and control with an energy harvesting sensor. Automatica, 2018, 91: 54−60. doi: 10.1016/j.automatica.2018.01.027
- 30.
Hu, J.; Wang, Z.D.; Gao, H.J. Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises. Automatica, 2013, 49: 3440−3448. doi: 10.1016/j.automatica.2013.08.021
- 31.
Song, E.B.; Zhu, Y.M.; Zhou, J.; et al. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica, 2007, 43: 1450−1456. doi: 10.1016/j.automatica.2007.01.010
- 32.
Feng, J.X.; Wang, Z.D.; Zeng, M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises. Inf. Fusion, 2013, 14: 78−86. doi: 10.1016/j.inffus.2011.09.004
- 33.
Rogers, S.R. Alpha-beta filter with correlated measurement noise. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 592–594. doi:10.1109/TAES.1987.310893
- 34.
Sun, S.L. Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises. IEEE Trans. Signal Process., 2020, 68: 1064−1074. doi: 10.1109/TSP.2020.2967180
- 35.
Hao, G.; Sun, S.L. Distributed fusion filter for nonlinear multi-sensor systems with correlated noises. IEEE Access, 2020, 8: 39548−39560. doi: 10.1109/ACCESS.2020.2976201
- 36.
Makinen, Y.; Azzari, L.; Foi, A. Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching. IEEE Trans. Image Process., 2020, 29: 8339−8354. doi: 10.1109/TIP.2020.3014721
- 37.
Zhao, Y.B.; Liu, G.P.; Rees, D. Design of a packet-based control framework for networked control systems. IEEE Trans. Control Syst. Technol., 2009, 17: 859−865. doi: 10.1109/TCST.2008.2010946