2509001375
  • Open Access
  • Article

Fuzzy Recurrence Dynamics of Contrast Medium Extravasation in Computed Tomography

  • Tuan D. Pham 1, *,   
  • Maki Kitamura 2,   
  • Taichiro Tsunoyama 3

Received: 30 Mar 2025 | Accepted: 04 May 2025 | Published: 19 Sep 2025

Abstract

Objectives: The discovery of complex patterns in contrast medium extravasation on computed tomography (CT) imaging is critical for improving trauma patient management. Identifying these patterns enables early detection of complications such as vascular injury, organ rupture, and active hemorrhage, facilitating timely and targeted interventions that enhance patient outcomes. This study introduces an advanced imaging analytics approach that integrates nonlinear dynamic analysis and geostatistical methods to characterize the temporal and spatial evolution of contrast medium extravasation in trauma cases. Methods: We analyzed CT imaging sequences from trauma patients using fuzzy recurrence dynamics to uncover hidden structures within contrast dispersion patterns. This methodology quantifies subtle variations in blood flow, capturing previously unrecognized radiographic signatures associated with hemodynamics. Recurrence-based metrics were leveraged to identify dynamic changes indicative of impending complications, enhancing the predictive capabilities of trauma imaging. Results: The proposed approach effectively detected subtle, high-risk extravasation patterns that are often overlooked by conventional imaging techniques. The integration of nonlinear dynamic analysis and geostatistical modeling provided a more precise characterization of contrast dispersion, revealing predictive markers of vascular compromise. These findings support the application of advanced computational techniques for improving trauma imaging and clinical decision-making. Conclusion: The findings demonstrate the potential of integrating advanced nonlinear dynamics and network techniques into trauma imaging, offering a new framework for real-time detection, risk stratification, and predictive modeling of extravasation events. This approach represents a step toward precision medicine in emergency care, enabling automated, data-driven decision support for clinicians. By improving diagnostic accuracy and facilitating the early identification of high-risk extravasation patterns, this study lays the foundation for a paradigm shift in trauma imaging, supporting future clinical strategies for early therapeutic intervention, ultimately optimizing patient management and outcomes in critical care settings.

References 

  • 1.
    Pham, T.D.; Tsunoyama, T. Exploring extravasation in cancer patients. Cancers (Basel), 2024, 16: 2308. doi: 10.3390/cancers16132308
  • 2.
    Roditi, G.; Khan, N.; van der Molen, A.J.; et al. Intravenous contrast medium extravasation: Systematic review and updated ESUR contrast media safety committee guidelines. Eur. Radiol., 2022, 32: 3056−3066. doi: 10.1007/s00330-021-08433-4
  • 3.
    Moon, S.N.; Pyo, J.S.; Kang, W.S. Accuracy of contrast extravasation on computed tomography for diagnosing severe pelvic hemorrhage in pelvic trauma patients: A meta-analysis. Medicina (Kaunas), 2021, 57: 63. doi: 10.3390/medicina57010063
  • 4.
    Stefanos, S.S.; Kiser, T.H.; MacLaren, R.; et al. Management of noncytotoxic extravasation injuries: A focused update on medications, treatment strategies, and peripheral administration of vasopressors and hypertonic saline. Pharmacotherapy, 2023, 43: 321−337. doi: 10.1002/phar.2794
  • 5.
    Qamar, S.R.; Evans, D.; Gibney, B.; et al. Emergent comprehensive imaging of the major trauma patient: A new paradigm for improved clinical decision-making. Can. Assoc. Radiol. J., 2021, 72: 293−310. doi: 10.1177/0846537120914247
  • 6.
    Guglielmo, F.F.; Wells, M.L.; Bruining, D.H.; et al. Gastrointestinal bleeding at CT angiography and CT enterography: Imaging atlas and glossary of terms. Radiographics, 2021, 41: 1632−1656. doi: 10.1148/rg.2021210043
  • 7.
    Mericle, R.A.; Lopes, D.K.; Fronckowiak, M.D.; et al. A grading scale to predict outcomes after intra-arterial thrombolysis for stroke complicated by contrast extravasation. Neurosurgery, 2000, 46: 1307−1315. doi: 10.1097/00006123-200006000-00005
  • 8.
    Nagasawa, J.; Yokoyama, T.; Fujimoto, E.; et al. Delayed contrast medium excretion due to renal failure after an emergency mechanical thrombectomy for acute cerebral infarction. Cureus, 2024, 16: e74466. doi: 10.7759/CUREUS.74466
  • 9.
    Palm, H. G.; Riesner, H.J.; Lang, P.; et al. Diagnostic accuracy of fluoroscopy, radiography, and computed tomography in detecting cement leakage in kyphoplasty. J. Neurol. Surg. A Cent. Eur. Neurosurg., 2018, 79: 502−510. doi: 10.1055/s-0038-1641734
  • 10.
    Plat, V.D.; Bootsma, B.T.; Straatman, J.; et al. The clinical suspicion of a leaking intrathoracic esophagogastric anastomosis: The role of CT imaging. J. Thorac. Dis., 2020, 12: 7182−7192. doi: 10.21037/jtd-20-954
  • 11.
    Kim, M.G.; Kim, S.H.; Jeon, S.K.; et al. Added value of positive intraluminal contrast CT over fluoroscopic examination for detecting gastrointestinal leakage after gastrointestinal surgery. Sci. Rep., 2024, 14: 1011. doi: 10.1038/s41598-024-51556-z
  • 12.
    Yedavalli, V.; Sammet, S. Contrast extravasation versus hemorrhage after thrombectomy in patients with acute stroke. J. Neuroimaging, 2017, 27: 570−576. doi: 10.1111/jon.12446
  • 13.
    Juern, J.S.; Milia, D.; Codner, P.; et al. Clinical significance of computed tomography contrast extravasation in blunt trauma patients with a pelvic fracture. J. Trauma Acute Care Surg., 2017, 82: 138−140. doi: 10.1097/TA.0000000000001305
  • 14.
    Hale, O.; Deutsch, P.G.; Lahiri, A. Epirubicin extravasation: Consequences of delayed management. BMJ Case Rep., 2017, 2017: bcr2016218012. doi: 10.1136/bcr-2016-218012
  • 15.
    Haber, Z.M.; Charles, H.W.; Erinjeri, J.P.; et al. Predictors of active extravasation and complications after conventional angiography for acute intraabdominal bleeding. J. Clin. Med., 2017, 6: 47. doi: 10.3390/jcm6040047
  • 16.
    Ding, S.; Meystre, N.R.; Campeanu, C.; et al. Contrast media extravasations in patients undergoing computerized tomography scanning: A systematic review and meta-analysis of risk factors and interventions. JBI Database System. Rev. Implement. Rep., 2018, 16: 87−116. doi: 10.11124/JBISRIR-2017-003348
  • 17.
    Ye, Z.P.P.; Ai, X.L.; Zheng, J.; et al. Extravasation of contrast (Spot Sign) predicts in-hospital mortality in ruptured arteriovenous malformation. Br. J. Neurosurg., 2019, 33: 149−155. doi: 10.1080/02688697.2017.1384792
  • 18.
    Dreizin, D.; Liang, Y.Y.; Dent, J.; et al. Diagnostic value of CT contrast extravasation for major arterial injury after pelvic fracture: A meta-analysis. Am. J. Emerg. Med., 2020, 38: 2335−2342. doi: 10.1016/j.ajem.2019.11.038
  • 19.
    Hirata, I.; Mazzotta, A.; Makvandi, P.; et al. Sensing technologies for extravasation detection: A review. ACS Sens., 2023, 8: 1017−1032. doi: 10.1021/acssensors.2c02602
  • 20.
    Liu, W.L.; Wang, P.H.; Zhu, H.; et al. Contrast media extravasation injury: A prospective observational cohort study. Eur. J. Med. Res., 2023, 28: 458. doi: 10.1186/s40001-023-01444-5
  • 21.
    Mahajan, A.; Gupta, A.; Shukla, S.; et al. Additional use of extrinsic warmer for intravenous CT contrast media and its impact on incidence of contrast extravasations and allergic like reactions: A prospective observational case control study. Clin. Radiol., 2024, 79: 851−860. doi: 10.1016/j.crad.2024.08.013
  • 22.
    Wang, L.J.; Chen, Q.L.; Liu, H.P.; et al. Frequency and risk factors of contrast media extravasation in 378,082 intravenous contrast- enhanced CT scans. Eur. J. Radiol., 2025, 184: 111992. doi: 10.1016/j.ejrad.2025.111992
  • 23.
    Kobayashi, N.; Nakaura, T.; Shiraishi, K.; et al. A novel approach to detecting contrast extravasation in computed tomography: Evaluating the injection pressure-to-injection rate ratio. J. Comput. Assist. Tomogr., 2025, 49: 125−132. doi: 10.1097/RCT. 0000000000001614
  • 24.
    Chiles, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; John Wiley& Sons: Hoboken, 2012. doi:10.1002/ 9781118136188
  • 25.
    Pham, T.D. Fuzzy recurrence plots. Europhys. Lett., 2016, 116: 50008. doi: 10.1209/0295-5075/116/50008
  • 26.
    Pham, T.D. Fuzzy Recurrence Plots and Networks with Applications in Biomedicine; Springer: Cham, 2020. doi:10.1007/978-3-030- 37530-0
  • 27.
    Pham, T.D.; Holmes, S.B.; Patel, M.; et al. Features and networks of the mandible on computed tomography. R. Soc. Open Sci., 2024, 11: 231166. doi: 10.1098/rsos.231166
  • 28.
    Pham, T.D.; Kitamura, M.; Tsunoyama, T. Recurrence dynamics of extravasation on computed tomography. In 2025 IEEE International Conference on Cybernetics and Innovations (ICCI), Chonburi, Thailand, 2—4 April 2025; IEEE: New York, 2025; pp. 1–6. doi:10.1109/ICCI64209.2025.10987383
  • 29.
    Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall., 1951, 52: 119−139.
  • 30.
    Matheron, G. Estimating and Choosing: An Essay on Probability in Practice; Springer: Berlin, 1989. doi:10.1007/978-3-642-48817- 7
  • 31.
    Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, 1989.
  • 32.
    Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: New York, 1981. doi:10.1007/978- 1-4757- 0450- 1
  • 33.
    Zadeh, L.A. Similarity relations and fuzzy orderings. Inf. Sci., 1971, 3: 177−200. doi: 10.1016/S0020-0255(71)80005- 1
  • 34.
    Zbilut, J.P.; Webber, C.L. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A, 1992, 171: 199−203. doi: 10.1016/0375-9601(92)90426-M
  • 35.
    Webber, C.L.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol., 1994, 76: 965−973. doi: 10.1152/jappl.1994.76.2.965
  • 36.
    Marwan, N.; Wessel, N.; Meyerfeldt, U.; et al. Recurrence-plot-based measures of complexity and their application to heart-rate- variability data. Phys. Rev. E, 2002, 66: 026702. doi: 10.1103/PhysRevE.66.026702
  • 37.
    Marwan, N.; Kurths, J. Line structures in recurrence plots. Phys. Lett. A, 2005, 336: 349−357. doi: 10.1016/j.physleta.2004.12.056
  • 38.
    Pham, T.D. Quantification analysis of fuzzy recurrence plots. Europhys. Lett., 2022, 137: 62002. doi: 10.1209/0295-5075/ac5b9a
  • 39.
    Pham, T.D. From fuzzy recurrence plots to scalable recurrence networks of time series. Europhys. Lett., 2017, 118: 20003. doi: 10. 1209/0295-5075/118/20003
  • 40.
    Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440−442. doi: 10.1038/30918
  • 41.
    Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74: 47−97. doi: 10.1103/RevModPhys. 74.47
  • 42.
    Pham, T.D. Convolutional fuzzy recurrence eigenvalues. Europhys. Lett., 2021, 135: 20002. doi: 10.1209/0295-5075/ac0df8
  • 43.
    Arab, A.; Chinda, B.; Medvedev, G.; et al. A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT. Sci. Rep., 2020, 10: 19389. doi: 10.1038/s41598-020-76459-7
Share this article:
How to Cite
Pham, T. D.; Kitamura, M.; Tsunoyama, T. Fuzzy Recurrence Dynamics of Contrast Medium Extravasation in Computed Tomography. International Journal of Network Dynamics and Intelligence 2025, 4 (3), 100022. https://doi.org/10.53941/ijndi.2025.100022.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.