- 1.
Pham, T.D.; Tsunoyama, T. Exploring extravasation in cancer patients. Cancers (Basel), 2024, 16: 2308. doi: 10.3390/cancers16132308
- 2.
Roditi, G.; Khan, N.; van der Molen, A.J.; et al. Intravenous contrast medium extravasation: Systematic review and updated ESUR contrast media safety committee guidelines. Eur. Radiol., 2022, 32: 3056−3066. doi: 10.1007/s00330-021-08433-4
- 3.
Moon, S.N.; Pyo, J.S.; Kang, W.S. Accuracy of contrast extravasation on computed tomography for diagnosing severe pelvic hemorrhage in pelvic trauma patients: A meta-analysis. Medicina (Kaunas), 2021, 57: 63. doi: 10.3390/medicina57010063
- 4.
Stefanos, S.S.; Kiser, T.H.; MacLaren, R.; et al. Management of noncytotoxic extravasation injuries: A focused update on medications, treatment strategies, and peripheral administration of vasopressors and hypertonic saline. Pharmacotherapy, 2023, 43: 321−337. doi: 10.1002/phar.2794
- 5.
Qamar, S.R.; Evans, D.; Gibney, B.; et al. Emergent comprehensive imaging of the major trauma patient: A new paradigm for improved clinical decision-making. Can. Assoc. Radiol. J., 2021, 72: 293−310. doi: 10.1177/0846537120914247
- 6.
Guglielmo, F.F.; Wells, M.L.; Bruining, D.H.; et al. Gastrointestinal bleeding at CT angiography and CT enterography: Imaging atlas and glossary of terms. Radiographics, 2021, 41: 1632−1656. doi: 10.1148/rg.2021210043
- 7.
Mericle, R.A.; Lopes, D.K.; Fronckowiak, M.D.; et al. A grading scale to predict outcomes after intra-arterial thrombolysis for stroke complicated by contrast extravasation. Neurosurgery, 2000, 46: 1307−1315. doi: 10.1097/00006123-200006000-00005
- 8.
Nagasawa, J.; Yokoyama, T.; Fujimoto, E.; et al. Delayed contrast medium excretion due to renal failure after an emergency mechanical thrombectomy for acute cerebral infarction. Cureus, 2024, 16: e74466. doi: 10.7759/CUREUS.74466
- 9.
Palm, H. G.; Riesner, H.J.; Lang, P.; et al. Diagnostic accuracy of fluoroscopy, radiography, and computed tomography in detecting cement leakage in kyphoplasty. J. Neurol. Surg. A Cent. Eur. Neurosurg., 2018, 79: 502−510. doi: 10.1055/s-0038-1641734
- 10.
Plat, V.D.; Bootsma, B.T.; Straatman, J.; et al. The clinical suspicion of a leaking intrathoracic esophagogastric anastomosis: The role of CT imaging. J. Thorac. Dis., 2020, 12: 7182−7192. doi: 10.21037/jtd-20-954
- 11.
Kim, M.G.; Kim, S.H.; Jeon, S.K.; et al. Added value of positive intraluminal contrast CT over fluoroscopic examination for detecting gastrointestinal leakage after gastrointestinal surgery. Sci. Rep., 2024, 14: 1011. doi: 10.1038/s41598-024-51556-z
- 12.
Yedavalli, V.; Sammet, S. Contrast extravasation versus hemorrhage after thrombectomy in patients with acute stroke. J. Neuroimaging, 2017, 27: 570−576. doi: 10.1111/jon.12446
- 13.
Juern, J.S.; Milia, D.; Codner, P.; et al. Clinical significance of computed tomography contrast extravasation in blunt trauma patients with a pelvic fracture. J. Trauma Acute Care Surg., 2017, 82: 138−140. doi: 10.1097/TA.0000000000001305
- 14.
Hale, O.; Deutsch, P.G.; Lahiri, A. Epirubicin extravasation: Consequences of delayed management. BMJ Case Rep., 2017, 2017: bcr2016218012. doi: 10.1136/bcr-2016-218012
- 15.
Haber, Z.M.; Charles, H.W.; Erinjeri, J.P.; et al. Predictors of active extravasation and complications after conventional angiography for acute intraabdominal bleeding. J. Clin. Med., 2017, 6: 47. doi: 10.3390/jcm6040047
- 16.
Ding, S.; Meystre, N.R.; Campeanu, C.; et al. Contrast media extravasations in patients undergoing computerized tomography scanning: A systematic review and meta-analysis of risk factors and interventions. JBI Database System. Rev. Implement. Rep., 2018, 16: 87−116. doi: 10.11124/JBISRIR-2017-003348
- 17.
Ye, Z.P.P.; Ai, X.L.; Zheng, J.; et al. Extravasation of contrast (Spot Sign) predicts in-hospital mortality in ruptured arteriovenous malformation. Br. J. Neurosurg., 2019, 33: 149−155. doi: 10.1080/02688697.2017.1384792
- 18.
Dreizin, D.; Liang, Y.Y.; Dent, J.; et al. Diagnostic value of CT contrast extravasation for major arterial injury after pelvic fracture: A meta-analysis. Am. J. Emerg. Med., 2020, 38: 2335−2342. doi: 10.1016/j.ajem.2019.11.038
- 19.
Hirata, I.; Mazzotta, A.; Makvandi, P.; et al. Sensing technologies for extravasation detection: A review. ACS Sens., 2023, 8: 1017−1032. doi: 10.1021/acssensors.2c02602
- 20.
Liu, W.L.; Wang, P.H.; Zhu, H.; et al. Contrast media extravasation injury: A prospective observational cohort study. Eur. J. Med. Res., 2023, 28: 458. doi: 10.1186/s40001-023-01444-5
- 21.
Mahajan, A.; Gupta, A.; Shukla, S.; et al. Additional use of extrinsic warmer for intravenous CT contrast media and its impact on incidence of contrast extravasations and allergic like reactions: A prospective observational case control study. Clin. Radiol., 2024, 79: 851−860. doi: 10.1016/j.crad.2024.08.013
- 22.
Wang, L.J.; Chen, Q.L.; Liu, H.P.; et al. Frequency and risk factors of contrast media extravasation in 378,082 intravenous contrast- enhanced CT scans. Eur. J. Radiol., 2025, 184: 111992. doi: 10.1016/j.ejrad.2025.111992
- 23.
Kobayashi, N.; Nakaura, T.; Shiraishi, K.; et al. A novel approach to detecting contrast extravasation in computed tomography: Evaluating the injection pressure-to-injection rate ratio. J. Comput. Assist. Tomogr., 2025, 49: 125−132. doi: 10.1097/RCT. 0000000000001614
- 24.
Chiles, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; John Wiley& Sons: Hoboken, 2012. doi:10.1002/ 9781118136188
- 25.
Pham, T.D. Fuzzy recurrence plots. Europhys. Lett., 2016, 116: 50008. doi: 10.1209/0295-5075/116/50008
- 26.
Pham, T.D. Fuzzy Recurrence Plots and Networks with Applications in Biomedicine; Springer: Cham, 2020. doi:10.1007/978-3-030- 37530-0
- 27.
Pham, T.D.; Holmes, S.B.; Patel, M.; et al. Features and networks of the mandible on computed tomography. R. Soc. Open Sci., 2024, 11: 231166. doi: 10.1098/rsos.231166
- 28.
Pham, T.D.; Kitamura, M.; Tsunoyama, T. Recurrence dynamics of extravasation on computed tomography. In 2025 IEEE International Conference on Cybernetics and Innovations (ICCI), Chonburi, Thailand, 2—4 April 2025; IEEE: New York, 2025; pp. 1–6. doi:10.1109/ICCI64209.2025.10987383
- 29.
Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall., 1951, 52: 119−139.
- 30.
Matheron, G. Estimating and Choosing: An Essay on Probability in Practice; Springer: Berlin, 1989. doi:10.1007/978-3-642-48817- 7
- 31.
Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, 1989.
- 32.
Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: New York, 1981. doi:10.1007/978- 1-4757- 0450- 1
- 33.
Zadeh, L.A. Similarity relations and fuzzy orderings. Inf. Sci., 1971, 3: 177−200. doi: 10.1016/S0020-0255(71)80005- 1
- 34.
Zbilut, J.P.; Webber, C.L. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A, 1992, 171: 199−203. doi: 10.1016/0375-9601(92)90426-M
- 35.
Webber, C.L.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol., 1994, 76: 965−973. doi: 10.1152/jappl.1994.76.2.965
- 36.
Marwan, N.; Wessel, N.; Meyerfeldt, U.; et al. Recurrence-plot-based measures of complexity and their application to heart-rate- variability data. Phys. Rev. E, 2002, 66: 026702. doi: 10.1103/PhysRevE.66.026702
- 37.
Marwan, N.; Kurths, J. Line structures in recurrence plots. Phys. Lett. A, 2005, 336: 349−357. doi: 10.1016/j.physleta.2004.12.056
- 38.
Pham, T.D. Quantification analysis of fuzzy recurrence plots. Europhys. Lett., 2022, 137: 62002. doi: 10.1209/0295-5075/ac5b9a
- 39.
Pham, T.D. From fuzzy recurrence plots to scalable recurrence networks of time series. Europhys. Lett., 2017, 118: 20003. doi: 10. 1209/0295-5075/118/20003
- 40.
Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440−442. doi: 10.1038/30918
- 41.
Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74: 47−97. doi: 10.1103/RevModPhys. 74.47
- 42.
Pham, T.D. Convolutional fuzzy recurrence eigenvalues. Europhys. Lett., 2021, 135: 20002. doi: 10.1209/0295-5075/ac0df8
- 43.
Arab, A.; Chinda, B.; Medvedev, G.; et al. A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT. Sci. Rep., 2020, 10: 19389. doi: 10.1038/s41598-020-76459-7