2511002277
  • Open Access
  • Article

Finite-Time Bounded State Estimation for Time-Varying Systems Over FlexRay Networks With Probabilistic Bit Flips

  • Hongli Ge 1, 2,   
  • Lei Zou 1, 2, *,   
  • Hongwei Chen 1, 2,   
  • Jiyue Guo 3

Received: 03 Apr 2025 | Accepted: 26 May 2025 | Published: 13 Nov 2025

Abstract

This paper investigates the finite-time bounded state estimation problem for time-varying systems with energy-bounded noise over communication networks. Signal transmissions over networks are subject to encoding-decoding mechanisms and probabilistic bit flips. Furthermore, the FlexRay protocol (FRP) is utilized to schedule signal transmissions, mitigating communication delays and enhancing data exchange flexibility. The objective of this article is to develop a time-varying state estimator, accounting for FRP, encoding-decoding processes, and bit errors, to ensure the desired finite-time boundedness performance. Certain time-dependent sufficient conditions are established to guarantee the required estimation performance. The desired time-varying estimator parameter is subsequently calculated by solving a recursive matrix inequality. Finally, illustrative numerical examples is presented to validate the proposed state estimation algorithm.

References 

  • 1.

    Ciuonzo, D.; Aubry, A.; Carotenuto, V.. Rician MIMO channel-and jamming-aware decision fusion. IEEE Trans. Signal Process., 2017, 65: 3866−3880. doi: 10.1109/TSP.2017.2686375

  • 2.

    Ge, X.H.; Han, Q.L.; Zhang, X.M.;, et al. Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybern., 2020, 50: 1306−1320. doi: 10.1109/TCYB.2019.2917179

  • 3.

    Hou, N.; Dong, H.L.; Wang, Z.D.;, et al. A partial-node-based approach to state estimation for complex networks with sensor saturations under random access protocol. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32: 5167−5178. doi: 10.1109/TNNLS.2020. 3027252

  • 4.

    Liu, S.; Wang, Z.D.; Wang, L.C.;, et al. Recursive set-membership state estimation over a FlexRay network. IEEE Trans. Syst., Man, Cybern.: Syst., 2022, 52: 3591−3601. doi: 10.1109/TSMC.2021.3071390

  • 5.

    Guo, Y.R.; Wang, Z.D.; Li, J.Y.;, et al. State estimation for Markovian jump neural networks under probabilistic bit flips: Allocating constrained bit rates. IEEE Trans. Neural Netw. Learn. Syst., 2025, 36: 8802−8813. doi: 10.1109/tnnls.2024.3411484

  • 6.

    Zou, L.; Wang, Z.D.; Gao, H.J.;, et al. State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the Round-Robin protocol. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28: 1139−1151. doi: 10.1109/TNNLS. 2016.2524621

  • 7.

    Huong, D.C. Event-triggered finite-time guaranteed cost control of uncertain active suspension vehicle system. J. Control Decis. 2024, in press. doi: 10.1080/23307706.2024.2423186

  • 8.

    Cong Huong, D.. Design of event-triggered finite-time dissipative control for fractional-order time-delay interconnected systems. Circuits, Syst., Signal Process., 2025, 44: 3068−3087. doi: 10.1007/s00034-024-02992-9

  • 9.

    Li, J.; Mu, X.W.; Li, K.. Event-triggered finite-time bounded and finite-time stability for Networked Control Systems under DoS attacks. Int. J. Syst. Sci., 2020, 51: 2820−2836. doi: 10.1080/00207721.2020.1802625

  • 10.

    Shen, Y.X.; Wang, Z.D.; Shen, B.;, et al. Recursive state estimation for networked multirate multisensor systems with distributed time-delays under Round-Robin protocol. IEEE Trans. Cybern., 2022, 52: 4136−4146. doi: 10.1109/TCYB.2020.3021350

  • 11.

    Zou, L.; Wang, Z.D.; Han, Q.L.;, et al. Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. IEEE Trans. Automat. Control, 2017, 62: 6582−6588. doi: 10.1109/TAC.2017.2713353

  • 12.

    Liu, S.; Wang, Z.D.; Wang, L.C.;, et al. Finite-horizon H∞ filtering via a high-rate network with the FlexRay protocol. IEEE Trans. Automat. Control, 2023, 68: 3596−3603. doi: 10.1109/TAC.2022.3190791

  • 13.

    Wang, Y.Z.; Wang, Z.D.; Zou, L.;, et al. Ultimately bounded PID control for T–S fuzzy systems under FlexRay communication protocol. IEEE Trans. Fuzzy Syst., 2023, 31: 4308−4320. doi: 10.1109/TFUZZ.2023.3282044

  • 14.

    Zhang, P.; Zhu, C.Q.; Wang, Z.W.;, et al. Recursive set-membership filtering for two-dimensional shift-varying systems with FlexRay protocol and hybrid cyber attacks. Asian J. Control, 2025, 27: 797−816. doi: 10.1002/asjc.3478

  • 15.

    Lescanne, R.; Villiers, M.; Peronnin, T.;, et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys., 2020, 16: 509−513. doi: 10.1038/s41567-020-0824-x

  • 16.

    Liu, Q.Y.; Wang, Z.D.; Dong, H.L.;, et al. Remote estimation for energy harvesting systems under multiplicative noises: A binary encoding scheme with probabilistic bit flips. IEEE Trans. Automat. Control, 2023, 68: 343−354. doi: 10.1109/TAC.2022.3170540

  • 17.

    Rakin, A.S.; He, Z.Z.; Li, J.T.;, et al. T-BFA: Targeted bit-flip adversarial weight attack. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44: 7928−7939. doi: 10.1109/TPAMI.2021.3112932

  • 18.

    Shen, Y.F.; Song, W.Q.; Ji, H.R.;, et al. Improved belief propagation polar decoders with bit-flipping algorithms. IEEE Trans. Commun., 2020, 68: 6699−6713. doi: 10.1109/TCOMM.2020.3017656

  • 19.

    Bernstein, A.; Steiglitz, K.; Hopcroft, J.. Encoding of analog signals for binary symmetric channels. IEEE Trans. Inf. Theory, 1966, 12: 425−430. doi: 10.1109/TIT.1966.1053921

  • 20.

    Leung, H.; Seneviratne, C.; Xu, M. D.. A novel statistical model for distributed estimation in wireless sensor networks. IEEE Trans. Signal Process., 2015, 63: 3154−3164. doi: 10.1109/TSP.2015.2420536

  • 21.

    Xiao, J.J.; Cui, S.G.; Luo, Z.Q.;, et al. Power scheduling of universal decentralized estimation in sensor networks. IEEE Trans. Signal Process., 2006, 54: 413−422. doi: 10.1109/TSP.2005.861898

  • 22.

    Xing, M.P.; Lu, J.Q.; Qiu, J.L.;, et al. Synchronization of complex dynamical networks subject to DoS attacks: An improved coding- decoding protocol. IEEE Trans. Cybern., 2023, 53: 102−113. doi: 10.1109/TCYB.2021.3090406

  • 23.

    Ding, J.; Sun, S.L.; Ma, J.;, et al. Fusion estimation for multi-sensor networked systems with packet loss compensation. Inf. Fusion, 2019, 45: 138−149. doi: 10.1016/j.inffus.2018.01.008

  • 24.

    Yang, H.J.; Li, H.; Xia, Y.Q.;, et al. Distributed Kalman filtering over sensor networks with transmission delays. IEEE Trans. Cybern., 2021, 51: 5511−5521. doi: 10.1109/TCYB.2020.2980582

  • 25.

    Xin, D.J.; Shi, L. F.. Kalman filter for linear systems with unknown structural parameters. IEEE Trans. Circuits Syst. II: Express Briefs, 2022, 69: 1852−1856. doi: 10.1109/TCSII.2021.3103609

  • 26.

    Ge, Q.B.; Li, Y.Y.; Wang, Y.L.;, et al. Adaptive Kalman filtering based on model parameter ratios. IEEE Trans. Automat. Control, 2024, 69: 6230−6237. doi: 10.1109/TAC.2024.3376306

  • 27.

    Dai, D.Y.; Li, J.H.; Song, Y.H.;, et al. Event-based recursive filtering for nonlinear bias-corrupted systems with amplify-and-forward relays. Syst. Sci. Control Eng., 2024, 12: 2332419. doi: 10.1080/21642583.2024.2332419

  • 28.

    Wang, X.; Yaz, E. E.. Stochastically resilient extended Kalman filtering for discrete-time nonlinear systems with sensor failures. Int. J. Syst. Sci., 2014, 45: 1393−1401. doi: 10.1080/00207721.2013.879257

  • 29.

    Abolmasoumi, A.H.; Farahani, A.; Mili, L.. Robust particle filter design with an application to power system state estimation. IEEE Trans. Power Syst., 2024, 39: 1810−1821. doi: 10.1109/TPWRS.2023.3263203

  • 30.

    Jin, Y.H.; Ma, X.S.; Meng, X.Y.;, et al. Distributed fusion filtering for cyber-physical systems under Round-Robin protocol: A mixed H2/H∞ framework. Int. J. Syst. Sci., 2023, 54: 1661−1675. doi: 10.1080/00207721.2023.2208130

  • 31.

    Li, M.Q.; Chen, W.B.; Shao, Y.. Mixed H∞-based finite-time passive filtering for a class of uncertain nonlinear singular systems. Optim. Control Appl. Methods, 2024, 45: 1122−1139. doi: 10.1002/oca.3092

  • 32.

    Wang, F.; Liang, J. L.. Constrained H∞ estimation for time-varying networks with hybrid incomplete information. Int. J. Robust Nonlinear Control, 2018, 28: 699−715. doi: 10.1002/rnc.3894

  • 33.

    Ma, L.F.; Wang, Z.D.; Lam, H.K.;, et al. Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks. IEEE Trans. Cybern., 2017, 47: 3772−3783. doi: 10.1109/TCYB.2016.2582081

  • 34.

    Shen, Y.X.; Wang, Z.D.; Dong, H.L.;, et al. Set-membership state estimation for multirate nonlinear complex networks under FlexRay protocols: A neural-network-based approach. IEEE Trans. Neural Netw. Learn. Syst., 2025, 36: 4922−4933. doi: 10.1109/TNNLS.2024.3377537

  • 35.

    Han, F.; Liu, J.H.; Li, J.H.;, et al. Consensus control for multi-rate multi-agent systems with fading measurements: The dynamic event-triggered case. Syst. Sci. Control Eng., 2023, 11: 2158959. doi: 10.1080/21642583.2022.2158959

  • 36.

    Zhou, J., A i, X. R.. Finite-time H∞ filtering for Markov jump systems with partially unknown transition rates. Int. J. Adapt. Control Signal Process., 2024, 38: 3710−3730. doi: 10.1002/acs.3900

  • 37.

    Zong, G.D.; Wang, R.H.; Zheng, W.X.;, et al. Finite-time H∞ control for discrete-time switched nonlinear systems with time delay. Int. J. Robust Nonlinear Control, 2015, 25: 914−936. doi: 10.1002/rnc.3121

Share this article:
How to Cite
Ge, H.; Zou, L.; Chen, H.; Guo, J. Finite-Time Bounded State Estimation for Time-Varying Systems Over FlexRay Networks With Probabilistic Bit Flips. International Journal of Network Dynamics and Intelligence 2025, 4 (4), 100023. https://doi.org/10.53941/ijndi.2025.100023.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.