2511002361
  • Open Access
  • Article

Analysis and Prospect of Wind Power Forecasting Methods from Multiple Perspectives

  • Jie Liu,   
  • Bogang Qu *,   
  • Enming Wu,   
  • Nan Li,   
  • Zuxian Wang,   
  • Daogang Peng *

Received: 31 Jul 2025 | Accepted: 13 Sep 2025 | Published: 21 Nov 2025

Abstract

As one of the typical clean energy sources, the power prediction of wind power is crucial for power system scheduling, stability maintenance, and market trading. However, due to the intermittency and uncertainty of wind energy, wind power prediction faces many challenges. This paper overviews the basic concepts and application scenarios of wind power prediction, and systematically analyzes the methods that currently exist for wind power forecasting. Furthermore, this paper summarizes the key factors which affect the prediction accuracy, such as wind speed variations, unit characteristics, meteorological data quality, and geographic environment. In addition, this paper also introduces the commonly used error and reliability assessment metrics. Finally, the future research direction of wind power prediction is discussed the references for research in related fields are also provided.

References 

  • 1.

    Hanifi, S.; Liu, X.L.; Lin, Z.; et al. A critical review of wind power forecasting methods-past, present and future. Energies, 2020, 13: 3764. doi: 10.3390/en13153764

  • 2.

    González-Aparicio, I.; Zucker, A.. Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain. Appl. Energy, 2015, 159: 334−349. doi: 10.1016/j.apenergy.2015.08.104

  • 3.

    Yan, J.; Zhang, H.; Liu, Y.Q.; et al. Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping. IEEE Trans. Power Syst., 2018, 33: 3276−3284. doi: 10.1109/TPWRS.2017.2787667

  • 4.

    Li, M.L.; Yang, M.; Yu, Y.X.; et al. Short-term wind power forecast based on continuous conditional random field. IEEE Trans. Power Syst., 2024, 39: 2185−2197. doi: 10.1109/TPWRS.2023.3270662

  • 5.
    Focken, U.; Lange, M.; Waldl, H.P. Previento-a wind power prediction system with an innovative upscaling algorithm. In Proceedings of the European Wind Energy Conference & Exhibition; European Wind Energy Association: Copenhagen, 2001; pp. 826-829
  • 6.
    Mart, I.; Cabezn, D.; Villanueva, J.; et al. LocalPred and RegioPred. Advanced tools for wind energy prediction in complex terrain. Proceedings of the European Wind Energy Conference EWEC03, 2003, pp. 16-19.
  • 7.

    Liu, Y.; Wang, J.; Liu, L. Physics-informed reinforcement learning for probabilistic wind power forecasting under extreme events. Appl. Energy, 2024, 376. doi: 10.1016/J.APENERGY.2024.124068

  • 8.

    Sideratos, G.; Hatziargyriou, N.D.. An advanced statistical method for wind power forecasting. IEEE Trans. Power Syst., 2007, 22: 258−265. doi: 10.1109/TPWRS.2006.889078

  • 9.

    De Giorgi, M.G.; Ficarella, A.; Tarantino, M.. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy, 2011, 36: 3968−3978. doi: 10.1016/j.energy.2011.05.006

  • 10.

    Amjady, N.; Keynia, F.; Zareipour, H.. Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energy, 2011, 2: 265−276. doi: 10.1109/TSTE.2011.2114680

  • 11.

    Shi, J.; Ding, Z.H.; Lee, W.J.; et al. Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features. IEEE Trans. Smart Grid, 2014, 5: 521−526. doi: 10.1109/TSG.2013.2283269

  • 12.

    Li pu, M.S.H.; Miah, S.; Hannan, M.A.; et al. Artificial intelligence based hybrid forecasting approaches for wind power generation: Progress, challenges and prospects. IEEE Access, 2021, 9: 102460−102489. doi: 10.1109/ACCESS.2021.3097102

  • 13.

    Kosovic, B.; Haupt, S.E.; Adriaansen, D.; et al. A comprehensive wind power forecasting system integrating artificial intelligence and numerical weather prediction. Energies, 2020, 13: 1372. doi: 10.3390/en13061372

  • 14.

    Foley, A.M.; Leahy, P.G.; Marvuglia, A.; et al. Current methods and advances in forecasting of wind power generation. Renew. Energy, 2012, 37: 1−8. doi: 10.1016/j.renene.2011.05.033

  • 15.

    Li, Y.H.; Wang, H.; Yan, J.; et al. Ultra-short-term wind power forecasting based on the strategy of “dynamic matching and online modeling” . IEEE Trans. Sustain. Energy, 2025, 16: 107−123. doi: 10.1109/TSTE.2024.3424932

  • 16.

    Yin, X.X.; Zhao, Z.G.; Yang, W.J.. Predictive operations of marine pumped hydro-storage towards real time offshore wind-wave power complementarity: An event-triggered MPC approach. J. Energy Storage, 2023, 62: 106583. doi: 10.1016/j.est.2022.106583

  • 17.

    Ho ng, T.; Pinson, P.; Fan, S.; et al. Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. Int. J. Forecast., 2016, 32: 896−913. doi: 10.1016/j.ijforecast.2016.02.001

  • 18.

    Wan, C.; Lin, J.; Wang, J.H.; et al. Direct quantile regression for nonparametric probabilistic forecasting of wind power generation. IEEE Trans. Power Syst., 2017, 32: 2767−2778. doi: 10.1109/TPWRS.2016.2625101

  • 19.

    Zhang, H.; Liu, Y.Q.; Yan, J.; et al. Improved deep mixture density network for regional wind power probabilistic forecasting. IEEE Trans. Power Syst., 2020, 35: 2549−2560. doi: 10.1109/TPWRS.2020.2971607

  • 20.

    Ahuja, M.; Saini, S.. Enhancing short-term chaotic wind speed time-series prediction using hybrid approach with multiple data sets. Nonlinear Dyn., 2024, 112: 18031−18053. doi: 10.1007/s11071-024-09595-8

  • 21.

    Lorca; Sun, X.A.. Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans. Power Syst., 2015, 30: 1702−1713. doi: 10.1109/TPWRS.2014.2357714

  • 22.

    Li, Y.; Wang, R.N.; Li, Y.Z.; et al. Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach. Appl. Energy, 2023, 329: 120291. doi: 10.1016/j.apenergy.2022.120291

  • 23.

    Ti an, Z.D.. Chaotic characteristic analysis of short-term wind speed time series with different time scales. Energy Sources, Part A: Recovery, Util., Environ. Eff., 2022, 44: 2448−2463. doi: 10.1080/15567036.2019.1649757

  • 24.

    Wa ng, J.N.; Zhu, H.Q.; Zhang, Y.J.; et al. A novel prediction model for wind power based on improved long short-term memory neural network. Energy, 2023, 265: 126283. doi: 10.1016/j.energy.2022.126283

  • 25.

    Zhuo, W.H.; Savkin, A.V. Wind power dispatch based on wind forecasting, electricity price and battery lifetime estimation. In Proceedings of the 36th Chinese Control Conference, Dalian, China, 26–28 July 2017; IEEE: New York, 2017; pp. 2915–2920. doi: 10.23919/ChiCC.2017.8027808

  • 26.

    Chen, F.H.; Yan, J.; Tjernberg, L.B.; et al. Medium-term wind power forecasting based on dynamic self-attention mechanism. In Proceedings of 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; IEEE: New York, 2023; pp. 1–5. doi: 10.1109/PowerTech55446.2023.10202821

  • 27.

    Zjavka, L.; Mišák, S.. Direct wind power forecasting using a polynomial decomposition of the general differential equation. IEEE Trans. Sustain. Energy, 2018, 9: 1529−1539. doi: 10.1109/TSTE.2018.2794515

  • 28.

    Bhaskar, K.; Singh, S.N.. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy, 2012, 3: 306−315. doi: 10.1109/TSTE.2011.2182215

  • 29.

    Catalo, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F.. Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans. Sustain. Energy, 2011, 2: 50−59. doi: 10.1109/TSTE.2010.2076359

  • 30.

    Hong, D.Y.; Ji, T.Y.; Zhang, L.L.; et al. An indirect short-term wind power forecast approach with multi-variable inputs. In Proceedings of2016 IEEE Innovative Smart Grid Technologies-Asia, Melbourne, VIC, Australia, 28 November 2016 - 1 December 2016; IEEE: New York, 2016; pp. 793–798. doi: 10.1109/ISGT-Asia.2016.7796486

  • 31.

    Taylor, J.W.; McSharry, P.E.; Buizza, R.. Wind power density forecasting using ensemble predictions and time series models. IEEE Trans. Energy Convers., 2009, 24: 775−782. doi: 10.1109/TEC.2009.2025431

  • 32.

    Je on, J.; Taylor, J.W.. Using conditional kernel density estimation for wind power density forecasting. J. Am. Stat. Assoc., 2012, 107: 66−79. doi: 10.1080/01621459.2011.643745

  • 33.

    Van Poecke, A.; Tabari, H.; Hellinckx, P.. Unveiling the backbone of the renewable energy forecasting process: Exploring direct and indirect methods and their applications. Energy Rep., 2024, 11: 544−557. doi: 10.1016/j.egyr.2023.12.031

  • 34.

    Di ng, Y.; Ye, X.W.; Guo, Y.. A multistep direct and indirect strategy for predicting wind direction based on the EMD-LSTM model. Struct. Control Health Monit., 2023, 2023: 4950487. doi: 10.1155/2023/4950487

  • 35.

    Wa ng, Y.; Hu, Q.H.; Srinivasan, D.; et al. Wind power curve modeling and wind power forecasting with inconsistent data. IEEE Trans. Sustain. Energy, 2019, 10: 16−25. doi: 10.1109/TSTE.2018.2820198

  • 36.

    Ya ng, M.; Dai, B.Z.; Wang, J.X.; et al. Day-ahead wind power combination forecasting based on corrected numerical weather prediction and entropy method. IET Renew. Power Gen., 2021, 15: 1358−1368. doi: 10.1049/rpg2.12053

  • 37.

    Liu, L.J.; Liang, Y.J.. Wind power forecast optimization by integration of CFD and Kalman filtering. Energy Sources, Part A: Recovery, Util., Environ. Eff., 2021, 43: 1880−1896. doi: 10.1080/15567036.2019.1668080

  • 38.

    Li, L.; Wang, Y.M.; Liu, Y.Q. Wind velocity prediction at wind turbine hub height based on CFD model. In Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment, Chengdu, China, 19–21 August 2013; IEEE: New York, 2013; pp. 411–414. doi: 10.1109/ICMREE.2013.6893695

  • 39.

    Landberg, L.. A mathematical look at a physical power prediction model. Wind Energy, 1998, 1: 23−28. doi: 10.1002/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9

  • 40.
    Yamaguchi, A.; Ishihara, T.; Sakai, K.; et al. A physical-statistical approach for the regional wind power forecasting. In Proceedings of the European Wind Energy Conference EWEC, Milan, Italy, 7-10 May 2007; p. 31.
  • 41.

    Li, L.; Liu, Y.Q.; Yang, Y.P.; et al. A physical approach of the short-term wind power prediction based on CFD pre-calculated flow fields. J. Hydrodyn., 2013, 25: 56−61. doi: 10.1016/S1001-6058(13)60338-8

  • 42.

    Ning, C.; You, F.Q.. Data-driven adaptive robust unit commitment under wind power uncertainty: A Bayesian nonparametric approach. IEEE Trans. Power Syst., 2019, 34: 2409−2418. doi: 10.1109/TPWRS.2019.2891057

  • 43.

    Ren, Y.T.; Li, Z.L.; Xu, L.Y.; et al. The data-based adaptive graph learning network for analysis and prediction of offshore wind speed. Energy, 2023, 267: 126590. doi: 10.1016/j.energy.2022.126590

  • 44.

    Demolli, H.; Dokuz, A.S.; Ecemis, A.; et al. Wind power forecasting based on daily wind speed data using machine learning algorithms. Energy Convers. Manage., 2019, 198: 111823. doi: 10.1016/j.enconman.2019.111823

  • 45.

    Feng, C.; Cui, M.J.; Hodge, B.M.; et al. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Appl. Energy, 2017, 190: 1245−1257. doi: 10.1016/j.apenergy.2017.01.043

  • 46.

    Ahmed, S.I.; Ranganathan, P.; Salehfar, H. Forecasting of mid-and long-term wind power using machine learning and regression models. In Proceedings of2021 IEEE Kansas Power and Energy Conference, Manhattan, KS, USA, 19–20 April 2021; IEEE: New York, 2021, pp. 1–6. doi: 10.1109/KPEC51835.2021.9446250

  • 47.

    Wang, J.; Hou, Y.P.; Ma, Z.Q.; et al. Wind power generation forecasting based on multi-model fusion via blending ensemble learning architecture. Electron. Lett., 2024, 60: e13314. doi: 10.1049/ell2.13314

  • 48.

    Ahmadi, A.; Nabipour, M.; Mohammadi-Ivatloo, B.; et al. Long-term wind power forecasting using tree-based learning algorithms. IEEE Access, 2020, 8: 151511−151522. doi: 10.1109/ACCESS.2020.3017442

  • 49.

    Hao, Y.; Tian, C.S.. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. Appl. Energy, 2019, 238: 368−383. doi: 10.1016/j.apenergy.2019.01.063

  • 50.

    Chen, G.C.; Zhang, X.; Guan, Z.W.. The wind power forecast model based on improved EMD and SVM. Appl. Mech. Mater., 2014, 694: 150−154. doi: 10.4028/www.scientific.net/AMM.694.150

  • 51.

    Fu, Y.W.; Hu, W.; Tang, M.L.; et al. Multi-step ahead wind power forecasting based on recurrent neural networks. In Proceedings of 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference, Kota Kinabalu, Malaysia, 7–10 October 2018; IEEE: New York, 2018, pp. 217–222. doi: 10.1109/APPEEC.2018.8566471

  • 52.

    Huang, X.S.; Zhang, Y.B.; Liu, J.Z.; et al. A short-term wind power forecasting model based on 3D convolutional neural network- gated recurrent unit. Sustainability, 2023, 15: 14171. doi: 10.3390/su151914171

  • 53.

    Xiang, B.; Liu, Z.Q.; Huang, L.H.; et al. Based on the WSP-Optuna-LightGBM model for wind power prediction. J. Phys.: Conf. Ser., 2024, 2835: 012011. doi: 10.1088/1742-6596/2835/1/012011

  • 54.

    Huang, Y.F.; Ding, M.; Fang, Z.J.; et al. A long short-term memory based wind power prediction method. In Proceedings of2021 40th Chinese Control Conference, Shanghai, China, 26–28 July 2021; IEEE: New York, 2021, pp. 5927–5932. doi: 10.23919/CCC52363.2021.9550538

  • 55.

    Li, T.; Wang, J.; Gong, B.; et al. Multi-step prediction method of short-term wind power based on CTAR model. In Proceedings of 2024 IEEE International Instrumentation and Measurement Technology Conference, Glasgow, United Kingdom, 20–23 May 2024; IEEE: New York, 2024, pp. 1–6. doi: 10.1109/I2MTC60896.2024.10561199

  • 56.

    Gong, M.J.; Yan, C.C.; Xu, W.; et al. Short-term wind power forecasting model based on temporal convolutional network and Informer. Energy 2023, 283, 129171. doi: 10.1016/j.energy.2023.129171

  • 57.

    Wang, D.; Shi, Y.; Deng, W.Y.; et al. An ultra-short-term wind power forecasting method based on data-physical hybrid-driven model. In Proceedings of2023 IEEE/IAS Industrial and Commercial Power System Asia, Chongqing, China, 7–9 July 2023; IEEE: New York, 2023, pp. 2326–2334. doi: 10.1109/ICPSAsia58343.2023.10294681

  • 58.

    Cui, X.Y.; Li, H.W.; Pan, Z.Y.; et al. Data-driven physics based ultra-short-term wind power prediction model: A VMD-LSTM and WRF based approach. In Proceedings of 2022 4th International Conference on Smart Power & Internet Energy Systems, Beijing, China, 9–12 December 2022; IEEE: New York, 2022, pp. 2093–2097. doi: 10.1109/SPIES55999.2022.10082538

  • 59.

    Zh ou, H.Y.; Qiu, Y.N.; Feng, Y.H.; et al. Power prediction of wind turbine in the wake using hybrid physical process and machine learning models. Renew. Energy, 2022, 198: 568−586. doi: 10.1016/j.renene.2022.08.004

  • 60.

    Liu, L.; Liu, J.C.; Ye, Y.; et al. Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty. Renew. Energy, 2023, 205: 598−607. doi: 10.1016/j.renene.2023.01.038

  • 61.

    Xiang, L.; Fu, X.M.T.; Yao, Q.T.; et al. A novel model for ultra-short term wind power prediction based on Vision Transformer. Energy, 2024, 294: 130854. doi: 10.1016/j.energy.2024.130854

  • 62.

    Wei, H.; Wang, W.S.; Kao, X.X.. A novel approach to ultra-short-term wind power prediction based on feature engineering and informer. Energy Rep., 2023, 9: 1236−1250. doi: 10.1016/j.egyr.2022.12.062

  • 63.

    Xiang, L.; Liu, J.N.; Yang, X.; et al. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM. Energy Convers. Manage., 2022, 252: 115036. doi: 10.1016/j.enconman.2021.115036

  • 64.

    Michalakopoulos, V.; Zakynthinos, A.; Sarmas, E.; et al. Hybrid short-term wind power forecasting model using theoretical power curves and temporal fusion transformers. Renew. Energy, 2026, 256: 124008. doi: 10.1016/j.renene.2025.124008

  • 65.

    Khazaei, S.; Ehsan, M.; Soleymani, S.; et al. A high-accuracy hybrid method for short-term wind power forecasting. Energy, 2022, 238: 122020. doi: 10.1016/j.energy.2021.122020

  • 66.

    Wang, Y.S.; Pei, L.L.; Li, W.; et al. Short-term wind power prediction method based on multivariate signal decomposition and RIME optimization algorithm. Expert Syst. Appl., 2025, 259: 125376. doi: 10.1016/j.eswa.2024.125376

  • 67.

    Croonenbroeck, C.; Ambach, D.. A selection of time series models for short-to medium-term wind power forecasting. J. Wind Eng. Ind. Aerodyn., 2015, 136: 201−210. doi: 10.1016/j.jweia.2014.11.014

  • 68.

    Wu, B.; Wang, X.L.; Wang, B.Y.; et al. Synergistic Artificial intelligence framework for robust multivariate medium-term wind power prediction with uncertainty envelopes. Energy AI, 2025, 20: 100513. doi: 10.1016/j.egyai.2025.100513

  • 69.

    Chen, C.; Liu, H.. Medium-term wind power forecasting based on multi-resolution multi-learner ensemble and adaptive model selection. Energy Convers. Manage., 2020, 206: 112492. doi: 10.1016/j.enconman.2020.112492

  • 70.

    Sobolewski, R.A.; Tchakorom, M.; Couturier, R.. Gradient boosting-based approach for short-and medium-term wind turbine output power prediction. Renew. Energy, 2023, 203: 142−160. doi: 10.1016/j.renene.2022.12.040

  • 71.

    Yesilbudak, M.; Benli, M. Current status of medium-term and long-term wind power forecasting in the literature. In Proceedings of 2024 13th International Conference on Renewable Energy Research and Applications, Nagasaki, Japan, 9–13 November 2024; IEEE: New York, 2024, pp. 1615–1620. doi: 10.1109/ICRERA62673.2024.10815122

  • 72.

    Wan, C.Y.; Lei, S.B.; Luo, Y. Hiformer: Hybrid frequency feature enhancement inverted transformer for long-term wind power prediction. arXiv: 2410.13303, 2024. doi: 10.48550/arXiv.2410.13303

  • 73.

    Kanna, B.; Singh, S.N. Long term wind power forecast using adaptive wavelet neural network. In Proceedings of2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering, Varanasi, India, 9–11 December 2016; IEEE: New York, 2016, pp. 671–676. doi: 10.1109/UPCON.2016.7894735

  • 74.

    Sun, S.L.; Liu, Y.K.; Li, Q.; et al. Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks. Energy Convers. Manage., 2023, 283: 116916. doi: 10.1016/j.enconman.2023.116916

  • 75.

    Srivastava, T.; Vedanshu; Tripathi, M.M.. Predictive analysis of RNN, GBM and LSTM network for short-term wind power forecasting. J. Stat. Manage. Syst., 2020, 23: 33−47. doi: 10.1080/09720510.2020.1723224

  • 76.

    Zhao, Z.N.; Yun, S.N.; Jia, L.Y.; et al. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Eng. Appl. Artif. Intell., 2023, 121: 105982. doi: 10.1016/j.engappai.2023.105982

  • 77.

    Niu, Z.W.; Yu, Z.Y.; Tang, W.H.; et al. Wind power forecasting using attention-based gated recurrent unit network. Energy, 2020, 196: 117081. doi: 10.1016/j.energy.2020.117081

  • 78.

    Cui, Y.; Cheng, C.; Zhu, Y.; et al. A novel two-step framework for day-ahead wind power probabilistic forecasting considering uncertainties and ramp events. Int. J. Electr. Power Energy Syst., 2025, 169: 110780. doi: 10.1016/j.ijepes.2025.110780

  • 79.

    Lin, Y.; Yang, M.; Wan, C.; et al. A multi-model combination approach for probabilistic wind power forecasting. IEEE Trans. Sustain. Energy, 2019, 10: 226−237. doi: 10.1109/TSTE.2018.2831238

  • 80.

    Qu, Z.J.; Hou, X.X.; Huang, S.X.; et al. Probabilistic power forecasting for wind farm clusters using Moran-Graph network with posterior feedback attention mechanism. Energy, 2025, 328: 136558. doi: 10.1016/j.energy.2025.136558

  • 81.

    Wang, M.; Ying, F.X.; Nan, Q.R.. Refined offshore wind speed prediction: Leveraging a two-layer decomposition technique, gated recurrent unit, and kernel density estimation for precise point and interval forecasts. Eng. Appl. Artif. Intell., 2024, 133: 108435. doi: 10.1016/j.engappai.2024.108435

  • 82.

    Li, M.L.; Yang, M.; Yu, Y.X.; et al. A wind speed correction method based on modified hidden Markov model for enhancing wind power forecast. IEEE Trans. Ind. Appl., 2022, 58: 656−666. doi: 10.1109/TIA.2021.3127145

  • 83.

    Shirzadi, N.; Nasiri, F.; Menon, R.P.; et al. Smart urban wind power forecasting: Integrating weibull distribution, recurrent neural networks, and numerical weather prediction. Energies, 2023, 16: 6208. doi: 10.3390/en16176208

  • 84.

    Tang, Z.; Liu, J.; Ni, J.L.; et al. Power prediction of wind farm considering the wake effect and its boundary layer compensation. Prot. Control Mod. Power Syst., 2024, 9: 19−29. doi: 10.23919/PCMP.2023.000221

  • 85.

    Abedinia, O.; Ghasemi-Marzbali, A.; Shafiei, M.; et al. Wind power forecasting enhancement utilizing adaptive quantile function and CNN-LSTM: A probabilistic approach. IEEE Trans. Ind. Appl., 2024, 60: 4446−4457. doi: 10.1109/TIA.2024.3354218

  • 86.

    Keerthisinghe, C.; Silva, A.R.; Tardáguila, P.; et al. Improved short-term wind power forecasts: Low-latency feedback error correction using ramp prediction and data from nearby farms. IEEE Access, 2023, 11: 128697−128705. doi: 10.1109/ACCESS.2023.3332919

  • 87.

    Huang, Q.H.; Wang, X.. A forecasting model of wind power based on IPSO-LSTM and classified fusion. Energies, 2022, 15: 5531. doi: 10.3390/en15155531

  • 88.

    Xiong, B.R.; Lou, L.; Meng, X.Y.; et al. Short-term wind power forecasting based on Attention Mechanism and Deep Learning. Electr. Power Syst. Res., 2022, 206: 107776. doi: 10.1016/j.epsr.2022.107776

  • 89.

    Han, Y.; Mi, L.H.; Shen, L.; et al. A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Appl. Energy, 2022, 312: 118777. doi: 10.1016/j.apenergy.2022.118777

  • 90.

    Xu, S.W.; Wang, Y.J.; Xu, X.L.; et al. A multi-step wind power group forecasting seq2seq architecture with spatial-temporal feature fusion and numerical weather prediction correction. Energy, 2024, 291: 130352. doi: 10.1016/j.energy.2024.130352

  • 91.

    Hou, G.L.; Wang, J.J.; Fan, Y.Z.. Wind power forecasting method of large-scale wind turbine clusters based on DBSCAN clustering and an enhanced hunter-prey optimization algorithm. Energy Convers. Manage., 2024, 307: 118341. doi: 10.1016/j.enconman.2024.118341

  • 92.

    Man, J.F.; Xu, K.; Wang, D.; et al. Multi-device wind turbine power generation forecasting based on hidden feature embedding. Front. Energy Res., 2024, 12: 1346369. doi: 10.3389/fenrg.2024.1346369

  • 93.

    Ya ng, M.; Shi, C.Y.; Liu, H.Y.. Day-ahead wind power forecasting based on the clustering of equivalent power curves. Energy, 2021, 218: 119515. doi: 10.1016/j.energy.2020.119515

  • 94.

    Yang, L.; Tsung, F.; Wang, K.B.; et al. Wind power forecasting based on a spatial-temporal graph convolution network with limited engineering knowledge. IEEE Trans. Instrum. Meas., 2024, 73: 9002113. doi: 10.1109/TIM.2024.3374321

  • 95.

    Wan, A.P.; Peng, S.A.; AL-Bukhaiti, K.; et al. A novel hybrid BWO-BiLSTM-ATT framework for accurate offshore wind power prediction. Ocean Eng., 2024, 312: 119227. doi: 10.1016/j.oceaneng.2024.119227

  • 96.

    Sh ah, A.A.; Aftab, A.A.; Han, X.S.; et al. Prediction error-based power forecasting of wind energy system using hybrid WT- ROPSO-NARMAX model. Energies, 2023, 16: 3295. doi: 10.3390/en16073295

  • 97.

    Gu, B.; Hu, H.; Zhao, J.; et al. Short-term wind power forecasting and uncertainty analysis based on FCM-WOA-ELM-GMM. Energy Rep., 2023, 9: 807−819. doi: 10.1016/j.egyr.2022.11.202

  • 98.

    Wang, S.Y.; Liu, H.G.; Yu, G.Z.. Short-term wind power combination forecasting method based on wind speed correction of numerical weather prediction. Front. Energy Res., 2024, 12: 1391692. doi: 10.3389/fenrg.2024.1391692

  • 99.

    Chang, Y.; Yang, H.; Chen, Y.X.; et al. A hybrid model for long-term wind power forecasting utilizing NWP subsequence correction and multi-scale deep learning regression methods. IEEE Trans. Sustain. Energy, 2024, 15: 263−275. doi: 10.1109/TSTE.2023.3283242

  • 100.

    Kim, D.; Ryu, G.; Moon, C.; et al. Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR- SCADA integration: A case study of the 400-MW Anholt offshore wind farm. Appl. Energy, 2024, 373: 123882. doi: 10.1016/j. apenergy.2024.123882

  • 101.

    Couto, A.; Estanqueiro, A.. Enhancing wind power forecast accuracy using the weather research and forecasting numerical model- based features and artificial neuronal networks. Renew. Energy, 2022, 201: 1076−1085. doi: 10.1016/j.renene.2022.11.022

  • 102.

    Wang, X.D.; Hao, Y.; Yang, W.D.. Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy. Energy, 2024, 297: 131142. doi: 10.1016/j.energy.2024.131142

  • 103.

    Yakoub, G.; Mathew, S.; Leal, J.. Direct and indirect short-term aggregated turbine- and farm-level wind power forecasts integrating several NWP sources. Heliyon, 2023, 9: e21479. doi: 10.1016/j.heliyon.2023.e21479

  • 104.

    Hanifi, S.; Cammarono, A.; Zare-Behtash, H.. Advanced hyperparameter optimization of deep learning models for wind power prediction. Renew. Energy, 2024, 221: 119700. doi: 10.1016/j.renene.2023.119700

  • 105.

    Liu, G.L.; Zhang, S.W.; Zhao, H.; et al. Super-resolution perception for wind power forecasting by enhancing historical data. Front. Energy Res., 2022, 10: 959333. doi: 10.3389/fenrg.2022.959333

  • 106.

    Madsen, H.; Pinson, P.; Kariniotakis, G.; et al. Standardizing the performance evaluation of short-term wind power prediction models. Wind Eng., 2005, 29: 475−489. doi: 10.1260/030952405776234599

Share this article:
How to Cite
Liu, J.; Qu, B.; Wu, E.; Li, N.; Wang, Z.; Peng, D. Analysis and Prospect of Wind Power Forecasting Methods from Multiple Perspectives. International Journal of Network Dynamics and Intelligence 2025, 4 (4), 100024. https://doi.org/10.53941/ijndi.2025.100024.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.