2512002535
  • Open Access
  • Article

A Novel CEEMD-Based Multichannel Denoising Autoencoder for Noise Attenuation of Surface Microseismic Data

  • Chuang Guan 1, 2,   
  • Lujia Zheng 1, 2,   
  • Chuang Wang 1, 2, *

Received: 30 Mar 2025 | Accepted: 30 Sep 2025 | Published: 16 Dec 2025

Abstract

Surface microseismic data (SMD) are usually presented as weak signals affected by strong interference. In this paper, with the purpose of obtaining available SMD, a deep learning framework combining with the complete ensemble empirical mode decomposition (CEEMD) and the multichannel denoising autoencoder (MDAE) is established to strengthen weak signals and suppress strong interference. First of all, a sort of EMD algorithm referred to as CEEMD is employed to decompose each trace of the SMD into the intrinsic mode functions (IMFs) so as to reduce the interference of random noise. Then, an MDAE algorithm is put forward to extract the effective and robust features of the IMFs, where a novel loss function without any label information is designed to achieve unsupervised noise attenuation in the real-world scenario. After that, the decomposed IMFs are reconstructed from high frequency to low frequency by using the extracted features such that the high-frequency part of the microseismic signals is retained effectively. Finally, the proposed CEEMD-MDAE model is applied to the noise attenuation in both synthetic and real-world SMD datasets. Experimental results demonstrate that the CEEMD-MDAE algorithm significantly improves the signal-to-noise ratio and outperforms some existing popular denoising algorithms.

References 

  • 1.

    Maxwell, S.C.; Rutledge, J.; Jones, R.; et al. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 2010, 75: 75A129−75A137. doi: 10.1190/1.3477966

  • 2.

    Sun, J.; Wang, L.G.; Hou, H.Q. Application of micro-seismic monitoring technology in mining engineering. Int. J. Min. Sci. Technol., 2012, 22: 79−83. doi: 10.1016/j.ijmst.2011.06.007

  • 3.

    Zhao, B.X.; Wang, Z.R.; Liu, R.; et al. Review of microseismic monitoring technology research. Prog. Geophys., 2014, 29: 1882−1888. doi: 10.6038/pg20140454(InChinese)

  • 4.

    Jiang, R.C.; Dai, F.; Liu, Y.; et al. A novel method for automatic identification of rock fracture signals in microseismic monitoring. Measurement, 2021, 175: 109129. doi: 10.1016/j.measurement.2021.109129

  • 5.

    Zhang, W.L.; Li, C.; Ren, J.J.; et al. Measurement and application of vibration signals during pressure relief hole construction using microseismic system. Measurement, 2020, 158: 107696. doi: 10.1016/j.measurement.2020.107696

  • 6.

    Feng, Q.K.; Li, Y. Transform learning in the synchrosqueezing frequency domain–a novel denoising strategy for optical fiber seismic records. J. Appl. Geophys., 2022, 201: 104648. doi: 10.1016/j.jappgeo.2022.104648

  • 7.

    Zhang, C.; van der Baan, M. Multicomponent microseismic data denoising by 3D shearlet transform. Geophysics, 2018, 83: A45−A51. doi: 10.1190/geo2017-0788.1

  • 8.

    Mousavi, S.M.; Langston, C.A.; Horton, S.P. Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics, 2016, 81: V341−V355. doi: 10.1190/geo2015-0598.1

  • 9.

    Vera Rodriguez, I.; Bonar, D.; Sacchi, M. Microseismic data denoising using a 3C group sparsity constrained time-frequency transform. Geophysics, 2012, 77: V21−V29. doi: 10.1190/geo2011-0260.1

  • 10.

    Zhang, C.; van der Baan, M. A denoising framework for microseismic and reflection seismic data based on block matching. Geophysics, 2018, 83: V283−V292. doi: 10.1190/geo2017-0782.1

  • 11.

    Xu, Z.T.; Luo, Y.S.; Wu, B.Y.; et al. S2S-WTV: Seismic data noise attenuation using weighted total variation regularized self-supervised learning. IEEE Trans. Geosci. Remote Sens., 2023, 61: 5908315. doi: 10.1109/TGRS.2023.3268554

  • 12.

    Gao, H.Y.; Zhang, M.R.; Hou, N.; et al. Dynamic-transmission-based recursive filtering algorithm for microseismic event detection under sensor saturations. Measurement, 2021, 186: 110197. doi: 10.1016/j.measurement.2021.110197

  • 13.

    Han, J.J.; van der Baan, M. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics, 2015, 80: KS69−KS80. doi: 10.1190/geo2014-0423.1

  • 14.

    Jia, R.S.; Zhao, T.B.; Sun, H.M.; et al. Micro-seismic signal denoising method based on empirical mode decomposition and independent component analysis. Chin. J. Geophys., 2015, 58: 1013−1023. doi: 10.6038/cjg20150326(InChinese)

  • 15.

    Huang, N.E.; Shen, Z.; Long, S.R.; et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci., 1998, 454: 903−995. doi: 10.1098/rspa.1998.0193

  • 16.

    Lin, Y.; Liao, Q.D.; Lin, Z.X.; et al. A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction. Resour. Policy, 2022, 78: 102884. doi: 10.1016/j.resourpol.2022.102884

  • 17.

    Liu, J.C.; Gu, Y.; Chou, Y.X.; et al. Seismic data random noise reduction using a method based on improved complementary ensemble EMD and adaptive interval threshold. Explor. Geophys., 2021, 52: 137−149. doi: 10.1080/08123985.2020.1777849

  • 18.

    Zhao, Y.; Yue, Y.X.; Huang, J.L.; et al. CEEMD and wavelet transform jointed de-noising method. Prog. Geophys., 2015, 30: 2870−2877. doi: 10.6038/pg20150655(InChinese)

  • 19.

    Sun, M.M.; Li, Z.C.; Li, Z.N.; et al. A noise attenuation method for weak seismic signals based on compressed sensing and CEEMD. IEEE Access, 2020, 8: 71951−71964. doi: 10.1109/ACCESS.2020.2982908

  • 20.

    Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal., 2010, 2: 135−156. doi: 10.1142/S1793536910000422

  • 21.

    Zheng, H.M.; Dang, C.L.; Gu, S.M.; et al. A quantified self-adaptive filtering method: Effective IMFs selection based on CEEMD. Meas. Sci. Technol., 2018, 29: 085701. doi: 10.1088/1361-6501/aac990

  • 22.

    Wang, J.W.; Zhuang, Y.; Liu, Y.S. FSS-Net: A fast search structure for 3D point clouds in deep learning. Int. J. Network Dyn. Intell., 2023, 2: 100005. doi: 10.53941/IJNDI.2023.100005

  • 23.

    Zhong, T.; Cheng, M.; Dong, X.T.; et al. Seismic random noise attenuation by applying multiscale denoising convolutional neural network. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5905013. doi: 10.1109/TGRS.2021.3095922

  • 24.

    Kasongo, S.M. A deep learning technique for intrusion detection system using a recurrent neural networks based framework. Comput. Commun., 2023, 199: 113−125. doi: 10.1016/j.comcom.2022.12.010

  • 25.

    Tian, Y.N.; Sui, J.L.; Li, Y.; et al. A novel iterative PA-MRNet: Multiple noise suppression and weak signals recovery for downhole DAS data. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5914314. doi: 10.1109/TGRS.2022.3170635

  • 26.

    Dong, X.T.; Lin, J.; Lu, S.P.; et al. Seismic shot gather denoising by using a supervised-deep-learning method with weak dependence on real noise data: A solution to the lack of real noise data. Surv. Geophys., 2022, 43: 1363−1394. doi: 10.1007/s10712-022-09702-7

  • 27.

    Gao, Z.T.; Zhang, S.; Cai, J.X.; et al. Research on deep convolutional neural network time-frequency domain seismic signal denoising combined with residual dense blocks. Front. Earth Sci., 2021, 9: 681869. doi: 10.3389/FEART.2021.681869

  • 28.

    Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, 2012; pp. 1097–1105.

  • 29.

    Wang, T.T.; Trugman, D.; Lin, Y.Z. SeismoGen: Seismic waveform synthesis using GAN with application to seismic data augmentation. J. Geophys. Res.: Solid Earth, 2021, 126: e2020JB020077. doi: 10.1029/2020JB020077

  • 30.

    Wang, C.; Wang, Z.D.; Liu, Q.Y.; et al. Support-sample-assisted domain generalization via attacks and defenses: Concepts, algorithms, and applications to pipeline fault diagnosis. IEEE Trans. Industr. Inform., 2024, 20: 6413−6423. doi: 10.1109/TII.2023.3337364

  • 31.

    Zeng, N.Y.; Li, H.; Wang, Z.D.; et al. Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip. Neurocomputing, 2021, 425: 173−180. doi: 10.1016/j.neucom.2020.04.001

  • 32.

    Wang, C.; Wang, Z.D.; Dong, H.L. A novel prototype-assisted contrastive adversarial network for weak-shot learning with applications: Handling weakly labeled data. IEEE/ASME Trans. Mechatron., 2024, 29: 533−543. doi: 10.1109/TMECH.2023.3287070

  • 33.

    Li, Z.K.; Yu, X.H.; Qiu, J.B.; et al. Cell division genetic algorithm for component allocation optimization in multifunctional placers. IEEE Trans. Industr. Inform., 2022, 18: 559−570. doi: 10.1109/TII.2021.3069459

  • 34.

    Teng, J.D. A hybrid approach of deep learning to forecast financial performance: From unsupervised to supervised. Syst. Sci. Control Eng., 2024, 12: 2305411. doi: 10.1080/21642583.2024.2305411

  • 35.

    Gao, Y.; Zhao, P.Q.; Li, G.F.; et al. Seismic noise attenuation by signal reconstruction: An unsupervised machine learning approach. Geophys. Prospect., 2021, 69: 984−1002. doi: 10.1111/1365-2478.13070

  • 36.

    Sun, Q.Q.; Liu, X.F.; Bourennane, S.; et al. Multiscale denoising autoencoder for improvement of target detection. Int. J. Remote Sens., 2021, 42: 3002−3016. doi: 10.1080/01431161.2020.1856960

  • 37.

    Wang, M.Q.; Wu, Z.Y.; Sun, X.X.; et al. Trust-aware collaborative filtering with a denoising autoencoder. Neural Process. Lett., 2019, 49: 835−849. doi: 10.1007/s11063-018-9831-7

  • 38.

    Li, J.H.; Struzik, Z.; Zhang, L.Q.; et al. Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 2015, 165: 23−31. doi: 10.1016/j.neucom.2014.08.092

  • 39.

    Kim, Y.; Geng, J.H.; Ney, H. Improving unsupervised word-by-word translation with language model and denoising autoencoder. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; ACL: New York, 2018; pp. 862–868. doi: 10.18653/v1/D18-1101

  • 40.

    Saad, O.M.; Chen, Y.K. Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 2020, 85: V367−V376. doi: 10.1190/geo2019-0468.1

  • 41.

    Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 2009, 1: 1−41. doi: 10.1142/S1793536909000047

  • 42.

    Soulie, F.F.; Gallinari, P.; Le, Y.; Cun, Thiria, S. Automata networks and artificial intelligence. In Centre National de Recherche Scientifique on Automata Networks in Computer Science: Theory and Applications, Paris, France, 1987; Princeton University Press: Princeton, 1987; pp. 133–186.

  • 43.

    Huang, Y.F.; Yao, Z.N.; Xu, Q.F. Classification model of electricity consumption behavior based on sparse denoising autoencoder feature dimensionality reduction and spectral clustering. Int. J. Electr. Power Energy Syst., 2024, 158: 109960. doi: 10.1016/j.ijepes.2024.109960

  • 44.

    Ni, L.; Liew, V.K.S. Carbon emission price forecasting in China using a novel secondary decomposition hybrid model of CEEMD-SE-VMD-LSTM. Syst. Sci. Control Eng., 2024, 12: 2291409. doi: 10.1080/21642583.2023.2291409

  • 45.

    Aslam, M.M.; Tufail, A.; De Silva, L.C.; et al. An improved autoencoder-based approach for anomaly detection in industrial control systems. Syst. Sci. Control Eng., 2024, 12: 2334303. doi: 10.1080/21642583.2024.2334303

  • 46.

    Chen, Z.; Zhang, L.; Tang, J.M.; et al. Conditional generative adversarial net based feature extraction along with scalable weakly supervised clustering for facial expression classification. Int. J. Network Dyn. Intell., 2024, 3: 100024. doi: 10.53941/IJNDI.2024.100024

  • 47.

    Li, B.W.; Li, W.L. Distillation-based user selection for heterogeneous federated learning. Int. J. Network Dyn. Intell., 2024, 3: 100007. doi: 10.53941/IJNDI.2024.100007

  • 48.

    Liu, Z.T.; Lin, W.Y.; Yu, X.H.; et al. Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances. IEEE Trans. Ind. Electron., 2022, 69: 10500−10509. doi: 10.1109/TIE.2021.3137619

  • 49.

    Gong, M.T.; Sheng, L.; Zhou, D.H. Robust fault-tolerant stabilisation of uncertain high-order fully actuated systems with actuator faults. Int. J. Syst. Sci., 2024, 55: 2518−2530. doi: 10.1080/00207721.2024.2312868

  • 50.

    He, X.; Wang, Y.S.; Jin, J.Y. Bayesian inference and optimisation of stochastic dynamical networks. Int. J. Syst. Sci., 2024, 55: 2589−2603. doi: 10.1080/00207721.2024.2329737

  • 51.

    Wang, W.; Ma, L.F.; Rui, Q.Q.; et al. A survey on privacy-preserving control and filtering of networked control systems. Int. J. Syst. Sci., 2024, 55: 2269−2288. doi: 10.1080/00207721.2024.2343734

Share this article:
How to Cite
Guan, C.; Zheng, L.; Wang, C. A Novel CEEMD-Based Multichannel Denoising Autoencoder for Noise Attenuation of Surface Microseismic Data. International Journal of Network Dynamics and Intelligence 2025, 4 (4), 100026. https://doi.org/10.53941/ijndi.2025.100026.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.