2512002573
  • Open Access
  • Article

Three-Dimensional Obstacle Avoidance Path Planning for Agricultural UAV Based on Improved Ant Colony Algorithm

  • Yi Shao 1,   
  • Hua Yang 2,   
  • Ruibo Gao 2,   
  • Fuzhong Li 3, *

Received: 30 May 2025 | Accepted: 10 Oct 2025 | Published: 18 Dec 2025

Abstract

Obstacle avoidance is crucial for unmanned aerial vehicles (UAVs) in agriculture to perform tasks such as crop monitoring, precision spraying and picking assistance. The three-dimensional (3D) nature of orchards, with issues such as a larger search space, diverse obstacle shapes, and higher requirements for environmental adaptability, poses challenges for UAV obstacle avoidance. In this paper, a 3D obstacle avoidance path planning method for agricultural UAVs based on improved ant colony optimization (ACO) algorithm is proposed. Firstly, A 3D orchard simulation environment is constructed using MATLAB. Secondly, based on the characteristics of the orchard environment with large ups and downs of the terrain and multiple obstacles, the fitness function and heuristic information in the ACO algorithm have been modified. Thirdly, a leader ant optimization (LAO) algorithm is proposed by introducing the bellwether theory to improve the ACO algorithm. The LAO algorithm has been comprehensively evaluated on path optimal solution, obstacle avoidance capability, convergence speed and computation time. The experimental results demonstrate that the performance of LAO algorithm is optimal compared to the traditional ACO algorithm, genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. The proposed LAO algorithm is suitable for UAV obstacle avoidance in orchards.

References 

  • 1.

    Guebsi, R.; Mami, S.; Chokmani, K. Drones in precision agriculture: A comprehensive review of applications, technologies, and challenges. Drones 2024, 8: 686. doi: 10.3390/drones8110686

  • 2.

    Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; et al. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172: 107148. doi: 10.1016/j.comnet.2020.107148

  • 3.

    Wang, G.B.; Han, Y.X.; Li, X.; et al. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737: 139793. doi: 10.1016/j.scitotenv.2020.139793

  • 4.

    Wang, P.A.; Hanif, A.S.; Yu, S.H.; et al. Development of an autonomous drone spraying control system based on the coefficient of variation of spray distribution. Comput. Electron. Agric. 2024, 227: 109529. doi: 10.1016/j.compag.2024.109529

  • 5.

    Ahmed, S.; Qiu, B.J.; Ahmad, F.; et al. A state-of-the-art analysis of obstacle avoidance methods from the perspective of an agricultural sprayer UAV’s operation scenario. Agronomy 2021, 11: 1069. doi: 10.3390/agronomy11061069

  • 6.

    Bai, Y.H.; Zhang, B.H.; Xu, N.M.; et al. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Comput. Electron. Agric. 2023, 205: 107584. doi: 10.1016/j.compag.2022.107584

  • 7.

    Wang, D.S.; Li, W.; Liu, X.G.; et al. UAV environmental perception and autonomous obstacle avoidance: A deep learning and depth camera combined solution. Comput. Electron. Agric. 2020, 175: 105523. doi: 10.1016/j.compag.2020.105523

  • 8.

    Uğur, A. Path planning on a cuboid using genetic algorithms. Inf. Sci. 2008, 178: 3275-3287. doi: 10.1016/j.ins.2008.04.005

  • 9.

    Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107: 107376. doi: 10.1016/j.asoc.2021.107376

  • 10.

    Zhang, Z.; Wu, J.; Dai, J.Y.; et al. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment. Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng. 2022, 236: 72-81. doi: 10.1177/09544100211007381

  • 11.

    Hao, K.; Zhao, J.L.; Li, Z.S.; et al. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm. Ocean Eng., 2022, 263: 112421. doi: 10.1016/j.oceaneng.2022.112421

  • 12.

    Mazaheri, H.; Goli, S.; Nourollah, A. A survey of 3D space path-planning methods and algorithms. ACM Comput. Surv., 2025, 57: 1. doi: 10.1145/3673896

  • 13.

    Sun, B.; Niu, N.N. Multi-AUVs cooperative path planning in 3D underwater terrain and vortex environments based on improved multi-objective particle swarm optimization algorithm. Ocean Eng., 2024, 311: 118944. doi: 10.1016/j.oceaneng.2024.118944

  • 14.

    Cui, J.G.; Wu, L.; Huang, X.D.; et al. Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning. Knowl.-Based Syst., 2024, 288: 111459. doi: 10.1016/j.knosys.2024.111459

  • 15.

    Wu, L.; Huang, X.D.; Cui, J.G.; et al. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot. Expert Syst. Appl., 2023, 215: 119410. doi: 10.1016/j.eswa.2022.119410

  • 16.

    Hu, G.; Huang, F.Y.; Shu, B.; et al. MAHACO: Multi-algorithm hybrid ant colony optimizer for 3D path planning of a group of UAVs. Inf. Sci., 2025, 694: 121714. doi: 10.1016/j.ins.2024.121714

  • 17.

    Jin, B.H.; Sun, Y.; Wu, W.J.; et al. Deep reinforcement learning and ant colony optimization supporting multi-UGV path planning and task assignment in 3D environments. IET Intell. Trans. Syst., 2024, 18: 1652−1664. doi: 10.1049/itr2.12535

  • 18.

    Meng, R.H.; Sun, A.W.; Wu, Z. J.; et al. 3D smooth path planning of AUV based on improved ant colony optimization considering heading switching pressure. Sci. Rep., 2023, 13: 12348. doi: 10.1038/s41598-023-39346-5

  • 19.

    Zhang, C.; Hu, C.X.; Feng, J.R.; et al. A self-heuristic ant-based method for path planning of unmanned aerial vehicle in complex 3-D space with dense U-type obstacles. IEEE Access, 2019, 7: 150775−150791. doi: 10.1109/ACCESS.2019.2946448

  • 20.

    Liu, C.; Wu, L.; Li, G.X.; et al. AI-based 3D pipe automation layout with enhanced ant colony optimization algorithm. Autom. Constr., 2024, 167: 105689. doi: 10.1016/j.autcon.2024.105689

  • 21.

    Sangeetha, V.; Krishankumar, R.; Ravichandran, K.S.; et al. Energy-efficient green ant colony optimization for path planning in dynamic 3D environments. Soft Comput., 2021, 25: 4749−4769. doi: 10.1007/s00500-020-05483-6

  • 22.

    Zhang, C.; Wang, H.; Fu, L.H.; et al. Three-dimensional continuous picking path planning based on ant colony optimization algorithm. PLoS One, 2023, 18: e0282334. doi: 10.1371/journal.pone.0282334

  • 23.

    Wang, L.F.; Kan, J. M.; Guo, J.; et al. 3D path planning for the ground robot with improved ant colony optimization. Sensors, 2019, 19: 815. doi: 10.3390/s19040815

  • 24.

    Duan, H.B.; Yu, Y.X.; Zhang, X.Y.; et al. Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simul. Modell. Pract. Theory, 2010, 18: 1104−1115. doi: 10.1016/j.simpat.2009.10.006

  • 25.

    Guo, N.; Qian, B.; Na, J.; et al. A three-dimensional ant colony optimization algorithm for multi-compartment vehicle routing problem considering carbon emissions. Appl. Soft Comput., 2022, 127: 109326. doi: 10.1016/j.asoc.2022.109326

  • 26.

    Chen, Y.; Wu, J.F.; He, C.S.; et al. Intelligent warehouse robot path planning based on improved ant colony algorithm. IEEE Access, 2023, 11: 12360−12367. doi: 10.1109/ACCESS.2023.3241960

  • 27.

    Pu, X.C.; Xiong, C.W.; Ji, L. H.; et al. 3D path planning for a robot based on improved ant colony algorithm. Evol. Intel., 2024, 17: 55−65. doi: 10.1007/s12065-020-00397-6

  • 28.

    Zhang, C.; Zhang, D.; Zhang, M.Y.; et al. A three-dimensional ant colony algorithm for multi-objective ice routing of a ship in the Arctic area. Ocean Eng., 2022, 266: 113241. doi: 10.1016/j.oceaneng.2022.113241

  • 29.

    Li, X.J.; Yu, D.M. Study on an optimal path planning for a robot based on an improved ANT colony algorithm. Autom. Control Comput. Sci., 2019, 53: 236−243. doi: 10.3103/S0146411619030064

  • 30.

    Zhou, H.; Jiang, Z.Q.; Xue, Y.T.; et al. Research on path planning in 3D complex environments based on improved ant colony algorithm. Symmetry 2022, 14: 1917. doi: 10.3390/sym14091917

  • 31.

    Han, Z.H.; Liu, S.G.; Yu, F.; et al. A 3D measuring path planning strategy for intelligent CMMs based on an improved ant colony algorithm. Int. J. Adv. Manuf. Technol. 2017, 93: 1487-1497. doi: 10.1007/s00170-017-0503-y

  • 32.

    Song, J.F.; Pu, Y.Y.; Xu, X.Y. Adaptive ant colony optimization with sub-population and fuzzy logic for 3D laser scanning path planning. Sensors 2024, 24: 1098. doi: 10.3390/s24041098

  • 33.

    Yan, B.; Quan, J.L.; Yan, W.H. Three-dimensional obstacle avoidance harvesting path planning method for apple-harvesting robot based on improved ant colony algorithm. Agriculture 2024, 14: 1336. doi: 10.3390/agriculture14081336

  • 34.

    Yu, K.L. An obstacle avoidance method for agricultural plant protection UAV based on the fusion of ultrasonic and monocular vision. In Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021) Medical Imaging and Computer-Aided Diagnosis; Su, R.D.; Zhang, Y.D.; Liu, H., Eds.; Springer: Singapore, 2022; pp. 426–435. doi: 10.1007/978-981-16-3880-0_45

  • 35.

    Tu, G.T.; Juang, J.G. UAV path planning and obstacle avoidance based on reinforcement learning in 3D environments. Actuators 2023, 12: 57. doi: 10.3390/act12020057

  • 36.

    Zhang, G.Q.; Liu, J.D.; Luo, W.; et al. A shortest distance priority UAV path planning algorithm for precision agriculture. Sensors 2024, 24: 7514. doi: 10.3390/s24237514

  • 37.

    Liu, Z.L.; Wen, S.; Huang, G.F.; et al. Agricultural UAV obstacle avoidance system based on a depth image inverse projection algorithm and B-spline curve trajectory optimization algorithm. Inf. Technol. Control 2024, 53: 736-757. doi: 10.5755/j01.itc.53.3.36021

  • 38.

    Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Politecnico di Milano, Milan, 1992.

  • 39.

    Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43: 73-81. doi: 10.1016/S0303-2647(97)01708-5

  • 40.

    Dorigo, M.; Stützle, T. The ant colony optimization metaheuristic: Algorithms, applications, and advances. In Handbook of Metaheuristics; Glover, F.; Kochenberger, G.A., Eds.; Springer: Boston, 2003; pp. 250–285. doi: 10.1007/0-306-48056-5_9

Share this article:
How to Cite
Shao, Y.; Yang, H.; Gao, R.; Li, F. Three-Dimensional Obstacle Avoidance Path Planning for Agricultural UAV Based on Improved Ant Colony Algorithm. International Journal of Network Dynamics and Intelligence 2025, 4 (4), 100028. https://doi.org/10.53941/ijndi.2025.100028.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.