2512002577
  • Open Access
  • Article

Covid-19 Disinformation and Public Perceptions: Empowering Affective Analysis through Large Language Model

  • Baoyu Zhang 1, 2,   
  • Tao Chen 1, 2,   
  • Weishan Zhang 1, 2, *,   
  • Mengmeng Sui 3,   
  • Fulong Xu 4,   
  • Liang Han 4,   
  • Fuxiao Qi 4,   
  • Shasha Cui 4

Received: 25 Apr 2025 | Accepted: 27 Sep 2025 | Published: 18 Dec 2025

Abstract

Social media is flooded with disinformation about outbreaks, and emotional and ideological appeals can significantly influence public opinion more than objective facts. This study delves into the cognitive and affective responses of the public when confronted with disinformation about the Covid-19 epidemic on Weibo. To cope with the complexity of emotions, we designed a multidimensional complex affective space to depict the intricate cognition of the public. Drawing from human thinking processes, we proposed a fine-tuning method based on the large language model ChatGLM2-6B to augment semantic information and bolster the sentiment analysis capabilities of the large language model. The experimental results indicated that incorporating semantic information enhances the prediction accuracy of the large language model, with varying effects across different sentiment dimensions. Moreover, we analyze the public’s topics concerning epidemic disinformation, and the findings demonstrate that the public tends to generate similar topics for such fake news. Emojis have emerged as a means for individuals to supplement the expression of complex emotions.

References 

  • 1.

    Zaheer, H.; Bashir, M. Detecting fake news for COVID-19 using deep learning: A review. Multimed. Tools Appl., 2024, 83: 74469-74502. doi: 10.1007/s11042-024-18564-7

  • 2.

    Broda, E.; Strömbäck, J. Misinformation, disinformation, and fake news: Lessons from an interdisciplinary, systematic literature review. Ann. Int. Commun. Assoc., 2024, 48: 139-166. doi: 10.1080/23808985.2024.2323736

  • 3.

    Gallotti, R.; Valle, F.; Castaldo, N.; et al. Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nat. Hum. Behav., 2020, 4: 1285-1293. doi: 10.1038/s41562-020-00994-6

  • 4.

    Rodrigues, F.; Newell, R.; Babu, G.R.; et al. The social media Infodemic of health-related misinformation and technical solutions. Health Policy Technol., 2024, 13: 100846. doi: 10.1016/j.hlpt.2024.100846

  • 5.

    Radwan, E.; Radwan, A.; Radwan, W. The role of social media in spreading panic among primary and secondary school students during the COVID-19 pandemic: An online questionnaire study from the Gaza Strip, Palestine. Heliyon, 2020, 6: e05807. doi: 10.1016/j.heliyon.2020.e05807

  • 6.

    Islam, A.K.M.N.; Laato, S.; Talukder, S.; et al. Misinformation sharing and social media fatigue during COVID-19: An affordance and cognitive load perspective. Technol. Forecast. Soc. Change, 2020, 159: 120201. doi: 10.1016/j.techfore.2020.120201

  • 7.

    Secosan, I.; Virga, D.; Crainiceanu, Z.P.; et al. Infodemia: Another enemy for Romanian frontline healthcare workers to fight during the COVID-19 outbreak. Medicina, 2020, 56: 679. doi: 10.3390/medicina56120679

  • 8.

    Ratican, J.; Hutson, J. The six emotional dimension (6DE) model: A multidimensional approach to analyzing human emotions and unlocking the potential of emotionally intelligent artificial intelligence (AI) via large language models (LLM). DS J. Artif. Intell. Rob., 2023, 1: 44-51. doi: 10.59232/AIR-V1I1P105

  • 9.

    Amin, M.M.; Cambria, E.; Schuller, B.W. Will affective computing emerge from foundation models and general artificial intelligence? A first evaluation of ChatGPT. IEEE Intell. Syst., 2023, 38: 15-23. doi: 10.1109/MIS.2023.3254179

  • 10.

    Li, L.H.; Hessel, J.; Yu, Y.; et al. Symbolic chain-of-thought distillation: Small models can also “think” step-by-step. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, Canada, 1–4 July 2023; Association for Computational Linguistics, 2023; pp. 2665–2679. doi: 10.18653/v1/2023.acl-long.150

  • 11.

    Atmaja, B.T.; Sasou, A. Sentiment analysis and emotion recognition from speech using universal speech representations. Sensors, 2022, 22: 6369. doi: 10.3390/s22176369

  • 12.

    Miah, M.S.U.; Kabir, M.; Sarwar, T.B.; et al. A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM. Sci. Rep., 2024, 14: 9603. doi: 10.1038/s41598-024-60210-7

  • 13.

    Zhang, W.X.; Deng, Y.; Liu, B.; et al. Sentiment analysis in the era of large language models: A reality check. In Proceedings of Findings of the Association for Computational Linguistics, Mexico City, Mexico, 16–21 June 2024; Association for Computational Linguistics, 2024; pp. 3881–3906. doi: 10.18653/v1/2024.findings-naacl.246

  • 14.

    Fei, H.; Li, B.B.; Liu, Q.; et al. Reasoning implicit sentiment with chain-of-thought prompting. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, Canada, 9–14 July 2023; Association for Computational Linguistics, 2023; pp. 1171–1182. doi: 10.18653/v1/2023.acl-short.101

  • 15.

    Kadan, A.; Deepak, P.; Bhadra, S.; et al. Understanding latent affective bias in large pre-trained neural language models. Nat. Lang. Process. J., 2024, 7: 100062. doi: 10.1016/j.nlp.2024.100062

  • 16.

    Kılıç, S. Kappa testi. J. Mood Disord., 2015, 5: 142-144. doi: 10.5455/jmood.20150920115439

  • 17.

    Berrios, R. What is complex/emotional about emotional complexity. Front. Psychol., 2019, 10: 1606. doi: 10.3389/fpsyg.2019.01606

  • 18.

    Quoidbach, J.; Gruber, J.; Mikolajczak, M.; et al. Emodiversity and the emotional ecosystem. J. Exp. Psychol. Gen., 2014, 143: 2057-2066. doi: 10.1037/a0038025

  • 19.

    Barrett, L.F. Feelings or words? Understanding the content in self-report ratings of experienced emotion. J. Pers. Soc. Psychol., 2004, 87: 266-281. doi: 10.1037/0022-3514.87.2.266

  • 20.

    Grossmann, I.; Huynh, A.C.; Ellsworth, P.C. Emotional complexity: Clarifying definitions and cultural correlates. J. Pers. Soc. Psychol., 2016, 111: 895-916. doi: 10.1037/pspp0000084

  • 21.

    Chen, T.; Zhang, B.Y.; Wang, X.; et al. Public opinion evolution in cyberspace: A case analysis of Pelosi’s visit to Taiwan. IEEE Trans. Comput. Soc. Syst., 2024, 11: 319-329. doi: 10.1109/TCSS.2023.3239046

  • 22.

    Du, Z.X.; Qian, Y.J.; Liu, X.; et al. GLM: General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Association for Computational Linguistics, 2022; pp. 320–335. doi: 10.18653/v1/2022.acl-long.26

  • 23.

    Goffman, E. The presentation of self in everyday life. In Social Theory Re-Wired, 3rd ed.; Longhofer, W.; Winchester, D.; Eds.; Routledge: New York, 2023; pp. 450–459.

  • 24.

    Foucault, M. Discipline and punish. In Social Theory Re-Wired, 3rd ed.; Longhofer, W.; Winchester, D.; Eds.; Routledge: New York, 2023; 291–299.

  • 25.

    Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science, 2018, 359: 1146-1151. doi: 10.1126/science.aap9559

  • 26.

    Paletz, S.B.F.; Johns, M.A.; Murauskaite, E.E.; et al. Emotional content and sharing on Facebook: A theory cage match. Sci. Adv., 2023, 9: eade9231. doi: 10.1126/sciadv.ade9231

Share this article:
How to Cite
Zhang, B.; Chen, T.; Zhang, W.; Sui, M.; Xu, F.; Han, L.; Qi, F.; Cui, S. Covid-19 Disinformation and Public Perceptions: Empowering Affective Analysis through Large Language Model. International Journal of Network Dynamics and Intelligence 2025, 4 (4), 100029. https://doi.org/10.53941/ijndi.2025.100029.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.