- 1.
Schubert, M.; Perfetto, S.; Dafnis, A.; et al. Multifunctional Load Carrying Lightweight Structures for Space Design; Deutsche Gesellschaft für Luft-und Raumfahrt: Bonn, Germany, 2017.
- 2.
Stampone, B.; Pulcini, V.; Vitale, G.; et al. Towards Industry 5.0 within Micro-Injection moulding Production and Industrialisation: A proof of concept. Procedia Comput. Sci. 2025, 253, 3007–3014.
- 3.
Farooque, R.; Asjad, M.; Rizvi, S.J.A. A current state of art applied to injection moulding manufacturing process—A review. Mater. Today Proc. 2021, 43, 441–446.
- 4.
Párizs, R.D.; Török, D.; Ageyeva, T.; et al. Machine Learning in Injection Molding: An Industry 4.0 Method of Quality Prediction. Sensors 2022, 22, 2704.
- 5.
Silva, B.; Marques, R.; Faustino, D.; et al. Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing. Processes 2023, 11, 62.
- 6.
Pozzi, R.; Rossi, T.; Secchi, R. Industry 4.0 technologies: critical success factors for implementation and improvements in manufacturing companies. Prod. Plan. Control. 2023, 34, 139–158.
- 7.
Baptista, A.; Silva, F.; Porteiro, J.; et al. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402.
- 8.
Baptista, A.; Porteiro, J.; Míguez, J.L.; et al. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757.
- 9.
Çalışkan, H.; Küçükköse, M. The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy. Int. J. Refract. Met. Hard Mater. 2015, 50, 304–312.
- 10.
Bouzakis, A.; Skordaris, G.; Bouzakis, E.; et al. Wear Evolution on PVD Coated Cutting Tool Flank and Rake Explained Considering Stress, Strain and Strain-Rate Dependent Material Properties. Coatings 2023, 1982, 13.
- 11.
Sousa, V.F.C.; Da Silva, F.J.G.; Pinto, G.F.; et al. Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals 2021, 11, 260.
- 12.
Girisken, I.; Cam, G. Characterization of microstructure and high-temperature wear behavior of pack-borided Co-based Haynes 25 superalloy. CIRP J. Manuf. Sci. Technol. 2023, 45, 82–98. https://doi.org/10.1016/j.cirpj.2023.06.012.
- 13.
Gunen, A.; Gurol, U.; Kocak, M.; et al. Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature. Prog. Addit. Manuf. 2023, 8, 1281–1301. https://doi.org/10.1007/s40964-023-00398-8.
- 14.
Gunen, A.; Gurol, U.; Kocak, M.; et al. A new approach to improve some properties of wire arc additively manufactured stainless steel components: Simultaneous homogenization and boriding. Surf. Coat. Technol. 2023, 460, 129395. https://doi.org/10.1016/j.surfcoat.2023.129395.
- 15.
Kocaman, E.; Gurol, U.; Gunen, A.; et al. Effect of post-deposition heat treatments on high-temperature wear and corrosion behavior of Inconel 625. Mater. Today Commun. 2025, 42, 111101. https://doi.org/10.1016/j.mtcomm.2024.111101.
- 16.
Cam, G.; Gunen, A. Challenges and opportunities in the production of magnesium parts by directed energy deposition processes. J. Magnes. Alloys 2024, 12, 1663–1686. https://doi.org/10.1016/j.jma.2024.05.004.
- 17.
Bejaxhin, A.B.H.; Paulraj, G. A Review on Effect of Coatings on Tools and Surface Roughness as Vibration Resistance. Int. J. Emerg. Technol. Eng. Res. 2017, 5, 50–57.
- 18.
Saruhan, H.; Yıldız, M. Experimental Vibration Analysis of Titanium Aluminum Nitride (TiAlN) Coated Milling Cutting Tool Effects on Surface Roughness of AISI 4140 Steel Products. Duzce Univ. J. Sci. Technol. 2018, 6, 745–753.
- 19.
Sousa, V.F.C.; Silva, F.J.G.; Alexandre, R.; et al. Study of the wear behaviour of TiAlSiN and TiAlN PVD coated tools on milling operations of pre-hardened tool steel. Wear 2021, 476, 203695.
- 20.
Alhafian, M.R.; Valle, N.; Chemin, J.B.; et al. Influence of Si addition on the phase structure and oxidation behavior of PVD AlTiN and AlTiCrN coatings using high-resolution characterization techniques. J. Alloys Compd. 2023, 968, 171800.
- 21.
Fang, C.; Zhang, C.; Zhu, S.; et al. The influence of Y additions on the microstructure and mechanical properties of MoTaWNb refractory high entropy alloy films by magnetron sputtering. Surf. Coat. Technol. 2024, 484, 130792.
- 22.
Gordon, S.; Rodriguez-Suarez, T.; Roa, J.J.; et al. Mechanical integrity of PVD TiAlN-coated PcBN: Influence of substrate bias voltage and microstructural assemblage. Ceram. Int. 2024, 50, 6299–6308.
- 23.
Yang, W.; Xiong, J.; Guo, Z.; et al. Structure and properties of PVD TiAlN and TiAlN/CrAlN coated Ti(C, N)-based cermets. Ceram. Int. 2017, 43, 1911–1915.
- 24.
Aninat, R.; Valle, N.; Chemin, J.B.; et al. Addition of Ta and Y in a hard Ti-Al-N PVD coating: Individual and conjugated effect on the oxidation and wear properties. Corros. Sci. 2019, 156, 171–180.
- 25.
Abbas, A.T.; Sharma, N.; Alsuhaibani, Z.A.; et al. Multi-Objective Optimization of AISI P20 Mold Steel Machining in Dry Conditions Using Machine Learning. Machines 2023, 11, 748.
- 26.
Baptista, A. Efficiency, Coating Properties, and Machining Performance of Thin Films Deposited Using HiPIMS: An Experimental Analysis. Ph.D. Thesis, University of Vigo, Vigo, Spain, 2024, https://doi.org/10.35869/11093/8887.
- 27.
Pinto, G.F. Experimental Study on PVD DC Sputtering Thin Films: Efficiency, Coating Properties, and Wear Tools Performance on Milling Pre-Hardness Tools Steels. Ph.D. Thesis, University of Vigo, Vigo, Spain, 2024, https://doi.org/10.35869/11093/8885.
- 28.
Dias, N.F.L.; Meijer, A.L.; Biermann, D.; et al. Structure and mechanical properties of TiAlTaN thin films deposited by dcMS, HiPIMS, and hybrid dcMS/HiPIMS. Surf. Coat. Technol. 2024, 487, 130987.
- 29.
Pfeiler, M.; Fontalvo, G.A.; Wagner, J.; et al. Arc Evaporation of Ti–Al–Ta–N Coatings: The Effect of Bias Voltage and Ta on High-temperature Tribological Properties. Tribol. Lett. 2008, 30, 91–97.
- 30.
Cao, H.-S.; Liu, F.-J.; Li, H.; et al. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings. Trans. Nonferrous Met. Soc. China 2022, 32, 3596–3609.
- 31.
Sui, X.; Li, G.; Jiang, C.; et al. Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings. Int. J. Refract. Met. Hard Mater. 2016, 58, 152–156.
- 32.
Sun, X.; Liu, Z.R.; Chen, L. Influence of Si and Ta mixed doping on the structure, mechanical and thermal properties of TiAlN coatings. Surf. Coat. Technol. 2023, 461, 129428.
- 33.
Liu, X.; Zhang, H.; Liu, C.; et al. Influence of bias patterns on the tribological properties of highly hydrogenated PVD a-C:H films. Surf. Coat. Technol. 2022, 442, 128234.
- 34.
Elmkhah, H.; Zhang, T.F.; Abdollah-zadeh, A.; et al. Surface characteristics for the TiAlN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages. J. Alloys Compd. 2016, 688, 820–827.
- 35.
Zhao, B.; Zhao, X.; Lin, L.; et al. Effect of bias voltage on mechanical properties, milling performance and thermal crack propagation of cathodic arc ion-plated TiAlN coatings. Thin Solid Film. 2020, 708, 138116.
- 36.
ISO 4288:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization: Geneva, Switzerland, 1996.
- 37.
ISO 8688-2:1989; Tool Life Testing in Milling—Part 2: End Milling. International Organization for Standardization: Geneva, Switzerland, 1989.
- 38.
Tillmann, W.; Meijer, A.L.; Platt, T.; et al. Cutting performance of TiAlN-based thin films in micromilling high-speed steel AISI M3:2. Manuf. Lett. 2024, 40, 6–10. https://doi.org/10.1016/j.mfglet.2024.01.005.