2508001115
  • Open Access
  • Article

Development of a Polymer Filament Extruder: Recycling 3D Printer Waste

  • André Guimarães 1, 2, 3, *,   
  • Samuel Messias 3,   
  • João Lopes 3,   
  • José Salgueiro 3,   
  • Daniel Gaspar 1, 2, 3

Received: 15 Jul 2025 | Revised: 04 Aug 2025 | Accepted: 14 Aug 2025 | Published: 04 Jan 2026

Abstract

This article presents the development of a polymer filament extruder to recycle waste from 3D printing. As additive manufacturing grows within Industry 4.0, managing thermoplastic waste like PLA, ABS, and PET has become a key challenge. The proposed modular system includes a shredder, an extrusion unit, and a winding module to produce high-quality filaments with precise dimensions (1.75 ± 0.03 mm), ensuring compatibility with 3D printers. Aligned with circular economy principles, the system promotes material reuse and reduces environmental impact. Results confirm its technical and environmental feasibility, with potential for large-scale use. Future improvements may include recycling other polymers and using smart sensors and algorithms to optimize the process.

References 

  • 1.

    Sigov, A.; Ratkin, L.; Ivanov, L.A.; et al. Emerging enabling technologies for industry 4.0 and beyond. Inf. Syst. Front. 2022, 26, 1585–1595.

  • 2.

    Jandyal, A.; Chaturvedi, I.; Wazir, I.; et al. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42.

  • 3.

    Kassab, A.; Al Nabhani, D.; Mohanty, P.; et al. Advancing plastic recycling: Challenges and opportunities in the integration of 3D printing and distributed recycling for a circular economy. Polymers 2023, 15, 3881.

  • 4.

    Madhu, N.R.; Erfani, H.; Jadoun, S.; et al. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: A review. Int. J. Adv. Manuf. Technol. 2022, 122, 2125–2138.

  • 5.

    Lanzotti, A.; Martorelli, M.; Maietta, S.; et al. A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia CIRP 2019, 79, 143–146.

  • 6.

    Pinho, A.C.; Amaro, A.M.; Piedade, A.P. 3D printing goes greener: Study of the properties of post-consumer recycled polymers for the manufacturing of engineering components. Waste Manag. 2020, 118, 426–434.

  • 7.

    Fico, D.; Rizzo, D.; De Carolis, V.; et al. Sustainable polymer composites manufacturing through 3D printing technologies by using recycled polymer and filler. Polymers 2022, 14, 3756.

  • 8.

    Wang, F.; Zhou, Q.; Zhang, Z.; et al. Microwave absorption properties of carbon black–carbonyl iron/polylactic acid composite filament for fused deposition modeling. Materials 2022, 15, 5455.

  • 9.

    Galib, G.; Silva, F. J.; Pedroso, A. F.; Campilho, R. D.; et al. A Comprehensive Review of Additive Manufacturing Technologies for Composite Materials. J. Mech. Eng. Manuf. 2025, 2-2.

  • 10.

    Lopes, J.; Messias, S.; Guimarães, A.; et al. Development of a Polymer Shredder: Recycling Waste from 3D Printers. Chin. Sci. Bull. 2024, 69, 4069–4086.

  • 11.

    Giani, N.; Mazzocchetti, L.; Benelli, T.; et al. Towards sustainability in 3D printing of thermoplastic composites: Evaluation of recycled carbon fibers as reinforcing agent for FDM filament production and 3D printing. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107002.

  • 12.

    Chawla, K.; Singh, R.; Singh, J. On recyclability of thermoplastic ABS polymer as fused filament for FDM technique of additive manufacturing. World J. Eng. 2022, 19, 352–360.

  • 13.

    Basilia, B.A.; Concepcion, J.N.; Prila, J.J. Development of 3D Printing Filaments from Recycled PLA Reinforced with Nanoclay. Key Eng. Mater. 2024, 975, 121–126.

  • 14.

    Lodha, S.; Song, B.; Park, S.I.; et al. Sustainable 3D printing with recycled materials: A review. J. Mech. Sci. Technol. 2023, 37, 5481–5507.

  • 15.

    Dorigato, A. Recycling of polymer blends. Adv. Ind. Eng. Polym. Res. 2021, 4, 53–69.

  • 16.

    Zander, N.E.; Gillan, M.; Burckhard, Z.; et al. Recycled polypropylene blends as novel 3D printing materials. Addit. Manuf. 2019, 25, 122–130.

  • 17.

    Rojek, I.; Mikołajewski, D.; Dostatni, E.; et al. AI-optimized technological aspects of the material used in 3D printing processes for selected medical applications. Materials 2020, 13, 5437.

  • 18.

    Moreno, E.; Beltrán, F.R.; Arrieta, M.P.; et al. Technical evaluation of mechanical recycling of PLA 3D printing wastes. Proceedings 2020, 69, 19.

  • 19.

    Su, C.; Chen, Y.; Tian, S.; et al. Natural materials for 3D printing and their applications. Gels 2022, 8, 748.

  • 20.

    Vidakis, N.; Petousis, M.; Maniadi, A.; et al. Sustainable additive manufacturing: Mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability 2020, 12, 3568.

  • 21.

    Maraveas, C.; Kyrtopoulos, I.V.; Arvanitis, K.G. Evaluation of the Viability of 3D Printing in Recycling Polymers. Polymers 2024, 16, 1104.

  • 22.

    Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; et al. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2021, 28, 12321–12333.

  • 23.

    Agbakoba, V.C.; Webb, N.; Jegede, E.; et al. Mechanical recycling of waste PLA generated from 3D printing activities: Filament production and thermomechanical analysis. Macromol. Mater. Eng. 2024, 309, 2300276.

  • 24.

    Lee, D.; Lee, Y.; Lee, K.; et al. Development and evaluation of a distributed recycling system for making filaments reused in three-dimensional printers. J. Manuf. Sci. Eng. 2019, 141, 021007.

  • 25.

    Gil Muñoz, V.; Muneta, L.M.; Carrasco-Gallego, R.; et al. Evaluation of the circularity of recycled PLA filaments for 3D printers. Appl. Sci. 2020, 10, 8967.

  • 26.

    Hachimi, T.; Naboulsi, N.; Majid, F.; et al. Design and Manufacturing of a 3D printer filaments extruder. Procedia Struct. Integr. 2021, 33, 907–916.

  • 27.

    Byrley, P.; Wallace, M.A.G.; Boyes, W.K.; et al. Particle and volatile organic compound emissions from a 3D printer filament extruder. Sci. Total Environ. 2020, 736, 139604.

  • 28.

    Groover, M.P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; John Wiley & Sons: Hoboken, NJ, USA, 2010.

  • 29.

    Zhang, Y.; Ji, G.; Ma, D.; et al. Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier. Process Saf. Environ. Prot. 2020, 142, 203–211.

  • 30.

    Kulko, R.D.; Pletl, A.; Hanus, A.; et al. Detection of Plastic Granules and Their Mixtures. Sensors 2023, 23, 3441.

  • 31.

    Fernandez, L.M.; Lüthi, A. Sleep spindles: Mechanisms and functions. Physiol. Rev. 2020, 100, 805–868.

  • 32.

    Jian, R.; Yang, W.; Xie, P.; et al. Enhancing a multi-field-synergy process for polymer composite plasticization: A novel design concept for screw to facilitate phase-to-phase thermal and molecular mobility. Appl. Therm. Eng. 2020, 164, 114448.

  • 33.

    Wilczyński, K.; Nastaj, A.; Lewandowski, A.; et al. Fundamentals of global modeling for polymer extrusion. Polymers 2019, 11, 2106.

  • 34.

    Goh, G.D.; Yap, Y.L.; Tan, H.K.J.; et al. Process–structure–properties in polymer additive manufacturing via material extrusion: A review. Crit. Rev. Solid State Mater. Sci. 2020, 45, 113–133.

  • 35.

    Abeykoon, C.; McMillan, A.; Nguyen, B.K. Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements. Renew. Sustain. Energy Rev. 2021, 147, 111219.

  • 36.

    Nastaj, A.; Wilczyński, K. Optimization and scale-up for polymer extrusion. Polymers 2021, 13, 1547.

  • 37.

    Manrich, S. Processamento de Termoplásticos: Rosca Única, Extrusão e Matrizes, Injeção e Moldes; Artliber Ed.: São Paulo, Brazil, 2005.

  • 38.

    Gotro, J. Poly Lactic Acid (PLA) is Gaining Traction in the Market, Polymer Innovation Blog. Available online: https://polymerinnovationblog.com/poly-lactic-acid-pla-is-gaining-traction-in-the-market/ (accessed on 3 January 2025).

  • 39.

    Yoon, Y.I.; Park, K.E.; Lee, S.J.; et al. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer. BioMed Res. Int. 2013, 2013, 309048.

  • 40.

    Zmeskal, O.; Marackova, L.; Lapcikova, T.; et al. Thermal properties of samples prepared from polylactic acid by 3D printing. AIP Conf. Proc. 2020, 2305, 020022.

  • 41.

    Yu, W.; Wang, X.; Ferraris, E.; et al. Melt crystallization of PLA/Talc in fused filament fabrication. Mater. Des. 2019, 182, 108013.

  • 42.

    Autodesk, System requirements for Autodesk Inventor 2020. Available online: https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/System-requirements-for-Autodesk-Inventor-2020.html (accessed on 14 December 2024).

Share this article:
How to Cite
Guimarães, A.; Messias, S.; Lopes, J.; Salgueiro, J.; Gaspar, D. Development of a Polymer Filament Extruder: Recycling 3D Printer Waste. Journal of Mechanical Engineering and Manufacturing 2026, 2 (1), 1. https://doi.org/10.53941/jmem.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.