2509001325
  • Open Access
  • Review

Lithium in Energy Storage: A Comprehensive Review of Its Extraction, Utilisation, and Sustainability

  • André F. V. Pedroso 1, 2, *,   
  • Miguel D. Martins 1,   
  • Carlos R. Regattieri 1, 3,   
  • Isabel M. Pinto 1,   
  • Francisco J. G. Silva 1, 4

Received: 03 Jul 2025 | Revised: 23 Jul 2025 | Accepted: 17 Sep 2025 | Published: 05 Jan 2026

Abstract

Lithium (Li) batteries have been part of any citizen’s daily life for about 30 years, although the knowledge about their potential dates to the early XX century. Being present in a wide range of applications, from small electronic appliances to hybrid or electric cars, Li has become essential to the most recent battery technology. In the need to change the harmful habits of fossil fuel usage, Li applications promise to provide a more sustainable way to deal with energy supply and improve energy storage devices efficiency. Resorting to Li carries the environmental burden of past battery technology since the materials used are well-known in the industry. Little changes have been made in Li battery manufacturing since it first became an industry, compromising its potential environmental benefits. The growing consumption drives efforts to extract Li and other scarce metals, but recycling rates are still too low for this industry to be considered a circular economy. Besides the quantifiable environmental indicators, many other intangible ones offer insight into the drawbacks and benefits of this emerging industry. In this study, the life cycle of Li-based energy storage devices is put into perspective from Li itself extraction, processing, and recycling. It was possible to identify many process variables in the Li life cycle using studies published in the last fifteen years, which can immediately reduce this promising technology’s environmental footprint. Besides immediate improvements, recycling has proven to be a highly efficient way to recover and reuse enormous amounts of Li and other materials in battery manufacturing. Beyond Li usage, a significant effort should be made to improve the supply of the remaining materials in a battery. This work intends to provide a comprehensive analysis using structured information about the Li life cycle, helping to understand the benefits and drawbacks of the intensive use of this kind of metal.

References 

  • 1.

    Berzelius, J.J. Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys 1817, 21, 44–48.

  • 2.

    Miśkowiec, P. Name game: The naming history of the chemical elements: Part 2—Turbulent nineteenth century. Found. Chem. 2023, 25, 215–234. https://doi.org/10.1007/s10698-022-09451-w.

  • 3.

    Webster, J.W. A Manual of Chemistry: Containing the Principal Facts of the Science, in the Order in Which They Are Discussed and Illustrated in the Lectures at Harvard University, NE and Several Other Colleges and Medical Schools in the United States: Compiled and Arranged as a Text Book for the Use of Students, and Persons Attending Lectures on Chemistry; Marsh, Capen, Lyon and Webb: Boston, MA, USA, 1839.

  • 4.

    Arfwedson, A. Undersökning af några vid Utö Jernmalmsbrott förekommende Fossilier, och af ett deri funnet eget Eldfast Alkali. Afh. I Fys. Kemi Och Mineral. 1818, 6, 145–172.

  • 5.

    Lewis, G.N.; Keyes, F.G. The Potential of the Lithium Electrode. J. Am. Chem. Soc. 1913, 35, 340–344.

  • 6.

    Reddy, M.V.; Mauger, A.; Julien, C.M.; et al. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884. https://doi.org/10.3390/ma13081884.

  • 7.

    Ostfeld, A.E.; Gaikwad, A.M.; Khan, Y.; et al. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 2016, 6, 26122. https://doi.org/10.1038/srep26122.

  • 8.

    Thompson, D.L.; Hartley, J.M.; Lambert, S.M.; et al. The importance of design in lithium ion battery recycling—a critical review. Green Chem. 2020, 22, 7585–7603. https://doi.org/10.1039/D0GC02745F.

  • 9.

    Hiremath, M.; Derendorf, K.; Vogt, T. Comparative Life Cycle Assessment of Battery Storage Systems for Stationary Applications. Environ. Sci. Technol. 2015, 49, 4825–4833. https://doi.org/10.1021/es504572q.

  • 10.

    Kebede, A.A.; Coosemans, T.; Messagie, M.; et al. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. J. Energy Storage 2021, 40, 102748. https://doi.org/10.1016/j.est.2021.102748.

  • 11.

    Windisch-Kern, S.; Gerold, E.; Nigl, T.; et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Manag. 2022, 138, 125–139. https://doi.org/10.1016/j.wasman.2021.11.038.

  • 12.

    Hawley, W.B.; Li, J. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing. J. Energy Storage 2019, 25, 100862. https://doi.org/10.1016/j.est.2019.100862.

  • 13.

    Liu, Y.; Zhang, R.; Wang, J.; et al. Current and future lithium-ion battery manufacturing. iScience 2021, 24, 102332. https://doi.org/10.1016/j.isci.2021.102332.

  • 14.

    Chen, T.; Jin, Y.; Lv, H.; et al. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. https://doi.org/10.1007/s12209-020-00236-w.

  • 15.

    Ren, W.; Zheng, Y.; Cui, Z.; et al. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 2021, 35, 157–168. https://doi.org/10.1016/j.ensm.2020.11.019.

  • 16.

    Niu, H.; Wang, L.; Guan, P.; et al. Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries. J. Energy Storage 2021, 40, 102659. https://doi.org/10.1016/j.est.2021.102659.

  • 17.

    Dusastre, V. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2010; pp. 1–332.

  • 18.

    Zhao, S.; He, W.; Li, G. Recycling Technology and Principle of Spent Lithium-Ion Battery. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–26.

  • 19.

    Ding, P.; Lin, Z.; Guo, X.; et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 2021, 51, 449–474. https://doi.org/10.1016/j.mattod.2021.08.005.

  • 20.

    Wang, K.; Wan, J.; Xiang, Y.; et al. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J. Power Sources 2020, 460, 228062. https://doi.org/10.1016/j.jpowsour.2020.228062.

  • 21.

    Chen, S.; Zhang, X.; Xia, M.; et al. Issues and challenges of layered lithium nickel cobalt manganese oxides for lithium-ion batteries. J. Electroanal. Chem. 2021, 895, 115412. https://doi.org/10.1016/j.jelechem.2021.115412.

  • 22.

    Ue, M.; Uosaki, K. Recent progress in liquid electrolytes for lithium metal batteries. Curr. Opin. Electrochem. 2019, 17, 106–113. https://doi.org/10.1016/j.coelec.2019.05.001.

  • 23.

    Grosjean, C.; Miranda, P.H.; Perrin, M.; et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. https://doi.org/10.1016/j.rser.2011.11.023.

  • 24.

    Prior, T.; Wäger, P.A.; Stamp, A.; et al. Sustainable governance of scarce metals: The case of lithium. Sci. Total Environ. 2013, 461–462, 785–791. https://doi.org/10.1016/j.scitotenv.2013.05.042.

  • 25.

    Panic, N.; Leoncini, E.; de Belvis, G.; et al. Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses. PLoS ONE 2013, 8, e83138.

  • 26.

    Liao, Y.; Deschamps, F.; Loures, E.d.F.R.; et al. Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. https://doi.org/10.1080/00207543.2017.1308576.

  • 27.

    Azarian, M.; Yu, H.; Shiferaw, A.T.; et al. Do We Perform Systematic Literature Review Right? A Scientific Mapping and Methodological Assessment. Logistics 2023, 7, 89. https://doi.org/10.3390/logistics7040089.

  • 28.

    Tóth, Á.; Suta, A.; Pimentel, J.; et al. A comprehensive, semi-automated systematic literature review (SLR) design: Application to P-graph research with a focus on sustainability. J. Clean. Prod. 2023, 415, 137741. https://doi.org/10.1016/j.jclepro.2023.137741.

  • 29.

    Moher, D.; Liberati, A.; Tetzlaff, J.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007.

  • 30.

    Leijon, J.; Boström, C. Charging Electric Vehicles Today and in the Future. World Electr. Veh. J. 2022, 13, 139. https://doi.org/10.3390/wevj13080139.

  • 31.

    Domingues, N. Lithium Prospection in Portugal for E-Mobility and Solar PV Expansion. Commodities 2022, 1, 98–114. https://doi.org/10.3390/commodities1020007.

  • 32.

    Mares, D.R. Understanding Cartel Viability: Implications for a Latin American Lithium Suppliers Agreement. Energies 2022, 15, 5569. https://doi.org/10.3390/en15155569.

  • 33.

    Weng, D.; Duan, H.; Hou, Y.; et al. Introduction of manganese based lithium-ion Sieve-A review. Prog. Nat. Sci. Mater. Int. 2020, 30, 139–152. https://doi.org/10.1016/j.pnsc.2020.01.017.

  • 34.

    He, X.; Kaur, S.; Kostecki, R. Mining Lithium from Seawater. Joule 2020, 4, 1357–1358. https://doi.org/10.1016/j.joule.2020.06.015.

  • 35.

    Zhang, Y.; Sun, W.; Xu, R.; et al. Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review. J. Clean. Prod. 2021, 285, 124905. https://doi.org/10.1016/j.jclepro.2020.124905.

  • 36.

    Yang, S.; Zhang, F.; Ding, H.; et al. Lithium Metal Extraction from Seawater. Joule 2018, 2, 1648–1651. https://doi.org/10.1016/j.joule.2018.07.006.

  • 37.

    Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; et al. Spodumene: The Lithium Market, Resources and Processes. Minerals 2019, 9, 334. https://doi.org/10.3390/min9060334.

  • 38.

    Liu, D.; Zhao, Z.; Xu, W.; et al. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination 2021, 519, 115302. https://doi.org/10.1016/j.desal.2021.115302.

  • 39.

    Li, H.; Eksteen, J.; Kuang, G. Recovery of lithium from mineral resources: State-of-the-art and perspectives–A review. Hydrometallurgy 2019, 189, 105129. https://doi.org/10.1016/j.hydromet.2019.105129.

  • 40.

    Kavanagh, L.; Keohane, J.; Garcia Cabellos, G.; et al. Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources 2018, 7, 57.

  • 41.

    Valdez, S.K.; Orce Schwarz, A.M.; Thames Cantolla, M.I. Empirical models to determine ions concentrations in lithium brines with high ionic strength. Results Eng. 2023, 18, 101145. https://doi.org/10.1016/j.rineng.2023.101145.

  • 42.

    Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. https://doi.org/10.1016/j.scitotenv.2018.05.223.

  • 43.

    Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. https://doi.org/10.1016/j.hydromet.2014.10.012.

  • 44.

    Zhao, X.; Yang, H.; Wang, Y.; et al. Review on the electrochemical extraction of lithium from seawater/brine. J. Electroanal. Chem. 2019, 850, 113389. https://doi.org/10.1016/j.jelechem.2019.113389.

  • 45.

    Zhang, F.; Yang, S.; Du, Y.; et al. A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater. Chem. Commun. 2020, 56, 6396–6399. https://doi.org/10.1039/D0CC01883J.

  • 46.

    Bertau, M.; Voigt, W.; Schneider, A.; et al. Lithium Recovery from Challenging Deposits: Zinnwaldite and Magnesium-Rich Salt Lake Brines. ChemBioEng Rev. 2017, 4, 360–376. https://doi.org/10.1002/cben.201700011.

  • 47.

    Rioyo, J.; Tuset, S.; Grau, R. Lithium Extraction from Spodumene by the Traditional Sulfuric Acid Process: A Review. Miner. Process. Extr. Metall. Rev. 2022, 43, 97–106. https://doi.org/10.1080/08827508.2020.1798234.

  • 48.

    Tadesse, B.; Makuei, F.; Albijanic, B.; et al. The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng. 2019, 131, 170–184. https://doi.org/10.1016/j.mineng.2018.11.023.

  • 49.

    Yelatontsev, D.; Mukhachev, A. Processing of lithium ores: Industrial technologies and case studies–A review. Hydrometallurgy 2021, 201, 105578. https://doi.org/10.1016/j.hydromet.2021.105578.

  • 50.

    Brandt, F.; Haus, R. New concepts for lithium minerals processing. Miner. Eng. 2010, 23, 659–661. https://doi.org/10.1016/j.mineng.2010.03.021.

  • 51.

    Zhou, Y.; Zhang, J.; Chen, Z.; et al. Continuous-flow synthesis of lithium carbonate in a microreactor system based on spent LIBs recycling process. Results Eng. 2023, 20, 101598. https://doi.org/10.1016/j.rineng.2023.101598.

  • 52.

    Wood, D.L.; Wood, M.; Li, J.; et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries. Energy Storage Mater. 2020, 29, 254–265. https://doi.org/10.1016/j.ensm.2020.04.036.

  • 53.

    Reynolds, C.D.; Slater, P.R.; Hare, S.D.; et al. A review of metrology in lithium-ion electrode coating processes. Mater. Des. 2021, 209, 109971. https://doi.org/10.1016/j.matdes.2021.109971.

  • 54.

    Lingappan, N.; Kong, L.; Pecht, M. The significance of aqueous binders in lithium-ion batteries. Renew. Sustain. Energy Rev. 2021, 147, 111227. https://doi.org/10.1016/j.rser.2021.111227.

  • 55.

    Hong, H.-J.; Lee, S.-Y.; Kwon, S.; et al. Preparation of lithium titanate nanoparticles assisted by an ion-exchange process and their electrochemical performance as anode materials for Li-ion batteries. J. Alloys Compd. 2021, 886, 161296. https://doi.org/10.1016/j.jallcom.2021.161296.

  • 56.

    Mourshed, M.; Niya, S.M.R.; Ojha, R.; et al. Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Mater. 2021, 40, 461–489. https://doi.org/10.1016/j.ensm.2021.05.032.

  • 57.

    Al-Shroofy, M.; Zhang, Q.; Xu, J.; et al. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries. J. Power Sources 2017, 352, 187–193. https://doi.org/10.1016/j.jpowsour.2017.03.131.

  • 58.

    Jiang, Z.; Li, J.; Yang, Y.; et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes. Nat. Commun. 2020, 11, 2310. https://doi.org/10.1038/s41467-020-16233-5.

  • 59.

    Zhen, E.; Jiang, J.; Lv, C.; et al. Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries. J. Power Sources 2021, 515, 230644. https://doi.org/10.1016/j.jpowsour.2021.230644.

  • 60.

    Susarla, N.; Ahmed, S.; Dees, D.W. Modeling and analysis of solvent removal during Li-ion battery electrode drying. J. Power Sources 2018, 378, 660–670. https://doi.org/10.1016/j.jpowsour.2018.01.007.

  • 61.

    Armand, M.; Axmann, P.; Bresser, D.; et al. Lithium-ion batteries–Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708. https://doi.org/10.1016/j.jpowsour.2020.228708.

  • 62.

    Liu, Y.; Elias, Y.; Meng, J.; et al. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364. https://doi.org/10.1016/j.joule.2021.06.009.

  • 63.

    Li, Q.; Chen, J.; Fan, L.; et al. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1, 18–42. https://doi.org/10.1016/j.gee.2016.04.006.

  • 64.

    Li, S.; Lorandi, F.; Wang, H.; et al. Functional polymers for lithium metal batteries. Prog. Polym. Sci. 2021, 122, 101453. https://doi.org/10.1016/j.progpolymsci.2021.101453.

  • 65.

    Zhong, S.; Yuan, B.; Guang, Z.; et al. Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Mater. 2021, 41, 805–841. https://doi.org/10.1016/j.ensm.2021.07.028.

  • 66.

    Mahmud, S.; Rahman, M.; Kamruzzaman, M.; et al. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results Eng. 2022, 15, 100472. https://doi.org/10.1016/j.rineng.2022.100472.

  • 67.

    Schreiner, D.; Klinger, A.; Reinhart, G. Modeling of the Calendering Process for Lithium-Ion Batteries with DEM Simulation. Procedia CIRP 2020, 93, 149–155. https://doi.org/10.1016/j.procir.2020.05.158.

  • 68.

    Kim, M.; Yoo, E.; Ahn, W.-S.; et al. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity. J. Power Sources 2018, 389, 20–27. https://doi.org/10.1016/j.jpowsour.2018.03.080.

  • 69.

    Cheng, L.; Sun, Q. Discharge Capacity Estimation for Lithium–Ion Battery Packs with Cells in Parallel Connection Based on Current Prediction of In-Pack Cells. Energy Technol. 2017, 5, 1250–1256. https://doi.org/10.1002/ente.201600549.

  • 70.

    Kaliaperumal, M.; Dharanendrakumar, M.S.; Prasanna, S.; et al. Cause and Mitigation of Lithium-Ion Battery Failure—A Review. Materials 2021, 14, 5676. https://doi.org/10.3390/ma14195676.

  • 71.

    Huang, B.; Pan, Z.; Su, X.; et al. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. https://doi.org/10.1016/j.jpowsour.2018.07.116.

  • 72.

    Siqi, Z.; Guangming, L.; Wenzhi, H.; et al. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review. Waste Manag. Res. 2019, 37, 1142–1152. https://doi.org/10.1177/0734242x19857130.

  • 73.

    Yang, Y.; Okonkwo, E.G.; Huang, G.; et al. On the sustainability of lithium ion battery industry–A review and perspective. Energy Storage Mater. 2021, 36, 186–212. https://doi.org/10.1016/j.ensm.2020.12.019.

  • 74.

    Gao, L.; Afreh, P.; Sidhoum, A.; et al. Optimization of high-temperature thermal pretreatment conditions for maximum enrichment of lithium and cobalt from spent lithium-ion polymer batteries. Results Eng. 2024, 23, 102802. https://doi.org/10.1016/j.rineng.2024.102802.

  • 75.

    Halleux, V. New EU Regulatory Framework for Batteries: Setting Sustainability Requirements; European Parliamentary Research Service: Brussels, Belgium, 2024; p. 12.

  • 76.

    Zhang, G.; Yuan, X.; He, Y.; et al. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries. J. Hazard. Mater. 2021, 406, 124332. https://doi.org/10.1016/j.jhazmat.2020.124332.

  • 77.

    Ciez, R.E.; Whitacre, J.F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2019, 2, 148–156. https://doi.org/10.1038/s41893-019-0222-5.

  • 78.

    Ali, H.; Khan, H.A.; Pecht, M.G. Circular economy of Li Batteries: Technologies and trends. J. Energy Storage 2021, 40, 102690. https://doi.org/10.1016/j.est.2021.102690.

  • 79.

    Mennik, F.; Dinç, N.İ.; Burat, F. Selective recovery of metals from spent mobile phone lithium-ion batteries through froth flotation followed by magnetic separation procedure. Results Eng. 2023, 17, 100868. https://doi.org/10.1016/j.rineng.2022.100868.

  • 80.

    Gaines, L. Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 2018, 17, e00068. https://doi.org/10.1016/j.susmat.2018.e00068.

  • 81.

    Doose, S.; Mayer, J.K.; Michalowski, P.; et al. Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations. Metals 2021, 11, 291. https://doi.org/10.3390/met11020291.

  • 82.

    He, Y.; Yuan, X.; Zhang, G.; et al. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Sci. Total Environ. 2021, 766, 142382. https://doi.org/10.1016/j.scitotenv.2020.142382.

  • 83.

    Sambamurthy, S.; Raghuvanshi, S.; Sangwan, K.S. Environmental impact of recycling spent lithium-ion batteries. Procedia CIRP 2021, 98, 631–636. https://doi.org/10.1016/j.procir.2021.01.166.

  • 84.

    Wang, J.; Guo, Z. Hydrometallurgically Recycling Spent Lithium-Ion Batteries. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 27–55.

  • 85.

    Jung, J.C.-Y.; Sui, P.-C.; Zhang, J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 2021, 35, 102217. https://doi.org/10.1016/j.est.2020.102217.

  • 86.

    Wang, Y.; An, N.; Wen, L.; et al. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2021, 55, 391–419. https://doi.org/10.1016/j.jechem.2020.05.008.

  • 87.

    Yin, H.; Xing, P. Pyrometallurgical Routes for the Recycling of Spent Lithium-Ion Batteries. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–83.

  • 88.

    Makuza, B.; Tian, Q.; Guo, X.; et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021, 491, 229622. https://doi.org/10.1016/j.jpowsour.2021.229622.

  • 89.

    Windisch-Kern, S.; Holzer, A.; Ponak, C.; et al. Thermal analysis of lithium ion battery cathode materials for the development of a novel pyrometallurgical recycling approach. Carbon Resour. Convers. 2021, 4, 184–189. https://doi.org/10.1016/j.crcon.2021.04.005.

  • 90.

    Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; et al. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. https://doi.org/10.1016/j.ensm.2021.02.032.

  • 91.

    Garcia, L.V.; Ho, Y.-C.; Myo Thant, M.M.; et al. Lithium in a Sustainable Circular Economy: A Comprehensive Review. Processes 2023, 11, 418. https://doi.org/10.3390/pr11020418.

  • 92.

    Orangi, S.; Manjong, N.; Clos, D.P.; et al. Historical and prospective lithium-ion battery cost trajectories from a bottom-up production modeling perspective. J. Energy Storage 2024, 76, 109800. https://doi.org/10.1016/j.est.2023.109800.

  • 93.

    Xu, C.; Dai, Q.; Gaines, L.; et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. https://doi.org/10.1038/s43246-020-00095-x.

  • 94.

    Chaves, C.; Pereira, E.; Ferreira, P.; et al. Concerns about lithium extraction: A review and application for Portugal✰. Extr. Ind. Soc. 2021, 8, 100928. https://doi.org/10.1016/j.exis.2021.100928.

  • 95.

    Liu, W.; Agusdinata, D.B. Dynamics of local impacts in low-carbon transition: Agent-based modeling of lithium mining-community-aquifer interactions in Salar de Atacama, Chile. Extr. Ind. Soc. 2021, 8, 100927. https://doi.org/10.1016/j.exis.2021.100927.

  • 96.

    Stamp, A.; Lang, D.J.; Wäger, P.A. Environmental impacts of a transition toward e-mobility: The present and future role of lithium carbonate production. J. Clean. Prod. 2012, 23, 104–112. https://doi.org/10.1016/j.jclepro.2011.10.026.

  • 97.

    Kelly, J.C.; Wang, M.; Dai, Q.; et al. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resour. Conserv. Recycl. 2021, 174, 105762. https://doi.org/10.1016/j.resconrec.2021.105762.

  • 98.

    Li, Z.; Li, C.; Liu, X.; et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 2021, 14, 3152–3159. https://doi.org/10.1039/D1EE00354B.

  • 99.

    Choe, G.; Kim, H.; Kwon, J.; et al. Re-evaluation of battery-grade lithium purity toward sustainable batteries. Nat. Commun. 2024, 15, 1185. https://doi.org/10.1038/s41467-024-44812-3.

  • 100.

    Jiang, S.; Zhang, L.; Li, F.; et al. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. J. Environ. Manag. 2020, 262, 110253. https://doi.org/10.1016/j.jenvman.2020.110253.

  • 101.

    Wanger, T.C. The Lithium future—Resources, recycling, and the environment. Conserv. Lett. 2011, 4, 202–206. https://doi.org/10.1111/j.1755-263X.2011.00166.x.

  • 102.

    Ellingsen, L.A.-W.; Majeau-Bettez, G.; Singh, B.; et al. Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J. Ind. Ecol. 2014, 18, 113–124. https://doi.org/10.1111/jiec.12072.

  • 103.

    Kim, H.C.; Wallington, T.J.; Arsenault, R.; et al. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environ. Sci. Technol. 2016, 50, 7715–7722. https://doi.org/10.1021/acs.est.6b00830.

  • 104.

    Golroudbary, S.R.; Calisaya-Azpilcueta, D.; Kraslawski, A. The Life Cycle of Energy Consumption and Greenhouse Gas Emissions from Critical Minerals Recycling: Case of Lithium-ion Batteries. Procedia CIRP 2019, 80, 316–321. https://doi.org/10.1016/j.procir.2019.01.003.

  • 105.

    Dai, Q.; Kelly, J.C.; Gaines, L.; et al. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48. https://doi.org/10.3390/batteries5020048.

  • 106.

    Notter, D.A.; Gauch, M.; Widmer, R.; et al. Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environ. Sci. Technol. 2010, 44, 7744. https://doi.org/10.1021/es1029156.

  • 107.

    Dunn, J.B.; Gaines, L.; Sullivan, J.; et al. Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries. Environ. Sci. Technol. 2012, 46, 12704–12710. https://doi.org/10.1021/es302420z.

  • 108.

    Zanoletti, A.; Carena, E.; Ferrara, C.; et al. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries 2024, 10, 38. https://doi.org/10.3390/batteries10010038.

  • 109.

    Premathilake, D.S.; Colombi, F.; Botelho Junior, A.B.; et al. Recycling lithium-ion battery graphite: Synthesis of adsorbent materials for highly efficient removal of dye and metal ions from wastewater. Results Eng. 2024, 22, 102232. https://doi.org/10.1016/j.rineng.2024.102232.

  • 110.

    Bayar, Y.; Gavriletea, M.D.; Sauer, S.; et al. Impact of Municipal Waste Recycling and Renewable Energy Consumption on CO2 Emissions across the European Union (EU) Member Countries. Sustainability 2021, 13, 656. https://doi.org/10.3390/su13020656.

  • 111.

    Dunn, J.B.; Gaines, L.; Kelly, J.C.; et al. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 2015, 8, 158–168. https://doi.org/10.1039/C4EE03029J.

  • 112.

    Cerdas, F.; Andrew, S.; Thiede, S.; et al. Environmental Aspects of the Recycling of Lithium-Ion Traction Batteries. In Recycling of Lithium-Ion Batteries: The LithoRec Way; Kwade, A., Diekmann, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 267–288.

  • 113.

    Chen, X.; Cao, L.; Kang, D.; et al. Hydrometallurgical Processes for Valuable Metals Recycling from Spent Lithium-Ion Batteries. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 93–139.

  • 114.

    Li, J.; Wang, G.; Xu, Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J. Hazard. Mater. 2016, 302, 97–104. https://doi.org/10.1016/j.jhazmat.2015.09.050.

  • 115.

    Liu, C.; Lin, J.; Cao, H.; et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. 2019, 228, 801–813. https://doi.org/10.1016/j.jclepro.2019.04.304.

  • 116.

    Rimpas, D.; Kaminaris, S.D.; Piromalis, D.D.; et al. Impact of Lithium Battery Recycling and Second-Life Application on Minimizing Environmental Waste. Environ. Sci. Proc. 2023, 26, 41. https://doi.org/10.3390/environsciproc2023026041.

  • 117.

    Giza, K.; Pospiech, B.; Gęga, J. Future Technologies for Recycling Spent Lithium-Ion Batteries (LIBs) from Electric Vehicles—Overview of Latest Trends and Challenges. Energies 2023, 16, 5777. https://doi.org/10.3390/en16155777.

  • 118.

    Petzold, M.; Flamme, S. Recycling Strategies for Spent Consumer Lithium-Ion Batteries. Metals 2024, 14, 151. https://doi.org/10.3390/met14020151.

  • 119.

    Huang, B.; Wang, J. Bio-hydrometallurgically Treatment of Spent Lithium-Ion Batteries. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 85–92.

  • 120.

    Kaksonen, A.H.; Deng, X.; Bohu, T.; et al. Prospective directions for biohydrometallurgy. Hydrometallurgy 2020, 195, 105376. https://doi.org/10.1016/j.hydromet.2020.105376.

  • 121.

    Jain, N.; Sharma, D.K. Biohydrometallurgy for Nonsulfidic Minerals—A Review. Geomicrobiol. J. 2004, 21, 135–144. https://doi.org/10.1080/01490450490275271.

  • 122.

    Marchese, D.; Giosuè, C.; Staffolani, A.; et al. An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries. Batteries 2024, 10, 27. https://doi.org/10.3390/batteries10010027.

  • 123.

    Duan, X.; Zhu, W.; Ruan, Z.; et al. Recycling of Lithium Batteries—A Review. Energies 2022, 15, 1611. https://doi.org/10.3390/en15051611.

  • 124.

    Abdalla, A.M.; Abdullah, M.F.; Dawood, M.K.; et al. Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. J. Energy Storage 2023, 67, 107551. https://doi.org/10.1016/j.est.2023.107551.

  • 125.

    Wagner-Wenz, R.; van Zuilichem, A.-J.; Göllner-Völker, L.; et al. Recycling routes of lithium-ion batteries: A critical review of the development status, the process performance, and life-cycle environmental impacts. MRS Energy Sustain. 2023, 10, 1–34. https://doi.org/10.1557/s43581-022-00053-9.

  • 126.

    Gupta, D.K.; Iyer, A.; Mitra, A.; et al. From power to plants: Unveiling the environmental footprint of lithium batteries. Environ. Sci. Pollut. Res. 2024, 31, 26343–26354. https://doi.org/10.1007/s11356-024-33072-9.

  • 127.

    Pražanová, A.; Plachý, Z.; Kočí, J.; et al. Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation. Batteries 2024, 10, 81. https://doi.org/10.3390/batteries10030081.

  • 128.

    He, B.; Zheng, H.; Tang, K.; et al. A Comprehensive Review of Lithium-Ion Battery (LiB) Recycling Technologies and Industrial Market Trend Insights. Recycling 2024, 9, 9. https://doi.org/10.3390/recycling9010009.

  • 129.

    Li, G.; An, L. Impacts of Recycling of Spent Lithium-Ion Batteries on Environmental Burdens. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; An, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 199–217.

  • 130.

    Tabelin, C.B.; Dallas, J.; Casanova, S.; et al. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 2021, 163, 106743. https://doi.org/10.1016/j.mineng.2020.106743.

  • 131.

    Parker, S.S.; Clifford, M.J.; Cohen, B.S. Potential impacts of proposed lithium extraction on biodiversity and conservation in the contiguous United States. Sci. Total Environ. 2024, 911, 168639. https://doi.org/10.1016/j.scitotenv.2023.168639.

  • 132.

    Buendía-Valverde, M.d.l.L.; Gómez-Merino, F.C.; Fernández-Pavía, Y.L.; et al. Lithium: An Element with Potential for Biostimulation and Biofortification Approaches in Plants. Horticulturae 2024, 10, 1022. https://doi.org/10.3390/horticulturae10101022.

  • 133.

    Shakoor, N.; Adeel, M.; Azeem, I.; et al. Interplay of higher plants with lithium pollution: Global trends, meta-analysis, and perspectives. Chemosphere 2023, 310, 136663. https://doi.org/10.1016/j.chemosphere.2022.136663.

  • 134.

    Hayyat, M.U.; Nawaz, R.; Siddiq, Z.; et al. Investigation of Lithium Application and Effect of Organic Matter on Soil Health. Sustainability 2021, 13, 1705. https://doi.org/10.3390/su13041705.

  • 135.

    Barbosa, H.; Soares, A.M.V.M.; Pereira, E.; et al. Lithium: A review on concentrations and impacts in marine and coastal systems. Sci. Total Environ. 2023, 857, 159374. https://doi.org/10.1016/j.scitotenv.2022.159374.

  • 136.

    Paul, S.M.; Potter, W.Z. Finding new and better treatments for psychiatric disorders. Neuropsychopharmacology 2024, 49, 3–9. https://doi.org/10.1038/s41386-023-01690-5.

  • 137.

    Bolan, N.; Hoang, S.A.; Tanveer, M.; et al. From mine to mind and mobiles–Lithium contamination and its risk management. Environ. Pollut. 2021, 290, 118067. https://doi.org/10.1016/j.envpol.2021.118067.

  • 138.

    Shakoor, N.; Adeel, M.; Ahmad, M.A.; et al. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. Environ. Sci. Ecotechnology 2023, 15, 100252. https://doi.org/10.1016/j.ese.2023.100252.

  • 139.

    Petavratzi, E.; Sanchez-Lopez, D.; Hughes, A.; et al. The impacts of environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the Lithium Triangle. Miner. Econ. 2022, 35, 673–699. https://doi.org/10.1007/s13563-022-00332-4.

  • 140.

    Vera, M.L.; Torres, W.R.; Galli, C.I.; et al. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 2023, 4, 149–165. https://doi.org/10.1038/s43017-022-00387-5.

  • 141.

    Bai, Y.; Muralidharan, N.; Sun, Y.-K.; et al. Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Mater. Today 2020, 41, 304–315. https://doi.org/10.1016/j.mattod.2020.09.001.

  • 142.

    European Committee. European Technology and Innovation Platform on Batteries–Batteries Europe; European Committee: Strasbourg Cedex, France, 2024.

  • 143.

    Sonoc, A.; Jeswiet, J. A Review of Lithium Supply and Demand and a Preliminary Investigation of a Room Temperature Method to Recycle Lithium Ion Batteries to Recover Lithium and Other Materials. Procedia CIRP 2014, 15, 289–293. https://doi.org/10.1016/j.procir.2014.06.006.

  • 144.

    Tang, C.; Sprecher, B.; Tukker, A.; et al. The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resour. Policy 2021, 74, 102351. https://doi.org/10.1016/j.resourpol.2021.102351.

  • 145.

    Benveniste, G.; Rallo, H.; Canals Casals, L.; et al. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. J. Environ. Manag. 2018, 226, 1–12. https://doi.org/10.1016/j.jenvman.2018.08.008.

  • 146.

    Albertsen, L.; Richter, J.L.; Peck, P.; et al. Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resour. Conserv. Recycl. 2021, 172, 105658. https://doi.org/10.1016/j.resconrec.2021.105658.

  • 147.

    Sheth, R.P.; Ranawat, N.S.; Chakraborty, A.; et al. The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective—A Review and Future Directions. Energies 2023, 16, 3228. https://doi.org/10.3390/en16073228.

  • 148.

    Tolomeo, R.; De Feo, G.; Adami, R.; et al. Application of Life Cycle Assessment to Lithium Ion Batteries in the Automotive Sector. Sustainability 2020, 12, 4628. https://doi.org/10.3390/su12114628.

  • 149.

    Leong, J.Y. Review on Circularity in the Electric Vehicle (EV) Industry. World Electr. Veh. J. 2024, 15, 426. https://doi.org/10.3390/wevj15090426.

  • 150.

    Lai, X.; Chen, Q.; Tang, X.; et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. eTransportation 2022, 12, 100169. https://doi.org/10.1016/j.etran.2022.100169.

  • 151.

    Zhang, H.; Xue, B.; Li, S.; et al. Life cycle environmental impact assessment for battery-powered electric vehicles at the global and regional levels. Sci. Rep. 2023, 13, 7952. https://doi.org/10.1038/s41598-023-35150-3.

  • 152.

    Paul, D.; Pechancová, V.; Saha, N.; et al. Life cycle assessment of lithium-based batteries: Review of sustainability dimensions. Renew. Sustain. Energy Rev. 2024, 206, 114860. https://doi.org/10.1016/j.rser.2024.114860.

  • 153.

    Nastasi, L.; Fiore, S. Environmental Assessment of Lithium-Ion Battery Lifecycle and of Their Use in Commercial Vehicles. Batteries 2024, 10, 90. https://doi.org/10.3390/batteries10030090.

  • 154.

    Sánchez, A.; Benveniste, G.; Ferreira, V.J.; et al. Methodology for social life cycle impact assessment enhanced with gender aspects applied to electric vehicle Li-ion batteries. The International Journal of Life Cycle Assessment 2025, 30, 1229-1245. https://doi.org/10.1007/s11367-024-02329-3.

  • 155.

    Wentker, M.; Greenwood, M.; Asaba, M.C.; et al. A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies. J. Energy Storage 2019, 26, 101022. https://doi.org/10.1016/j.est.2019.101022.

  • 156.

    Duan, S.; Yu, Z.; Li, J.; et al. Rapid Screening for Retired Batteries Based on Lithium-Ion Battery IC Curve Prediction. World Electr. Veh. J. 2024, 15, 451. https://doi.org/10.3390/wevj15100451.

  • 157.

    Kaunda, R.B. Potential environmental impacts of lithium mining. J. Energy Nat. Resour. Law 2020, 38, 237–244. https://doi.org/10.1080/02646811.2020.1754596.

  • 158.

    Karrech, A.; Azadi, M.R.; Elchalakani, M.; et al. A review on methods for liberating lithium from pegmatities. Miner. Eng. 2020, 145, 106085. https://doi.org/10.1016/j.mineng.2019.106085.

  • 159.

    Alessia, A.; Alessandro, B.; Maria, V.-G.; et al. Challenges for sustainable lithium supply: A critical review. J. Clean. Prod. 2021, 300, 126954. https://doi.org/10.1016/j.jclepro.2021.126954.

  • 160.

    Xiong, S.; Ji, J.; Ma, X. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manag. 2020, 102, 579–586. https://doi.org/10.1016/j.wasman.2019.11.013.

  • 161.

    Garole, D.J.; Hossain, R.; Garole, V.J.; et al. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities. ChemSusChem 2020, 13, 3079–3100. https://doi.org/10.1002/cssc.201903213.

  • 162.

    Pagliaro, M.; Meneguzzo, F. Lithium battery reusing and recycling: A circular economy insight. Heliyon 2019, 5, e01866. https://doi.org/10.1016/j.heliyon.2019.e01866.

  • 163.

    Boyden, A.; Soo, V.K.; Doolan, M. The Environmental Impacts of Recycling Portable Lithium-Ion Batteries. Procedia CIRP 2016, 48, 188–193. https://doi.org/10.1016/j.procir.2016.03.100.

  • 164.

    Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; et al. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries 2019, 5, 68. https://doi.org/10.3390/batteries5040068.

  • 165.

    Kim, S.; Bang, J.; Yoo, J.; et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean. Prod. 2021, 294, 126329. https://doi.org/10.1016/j.jclepro.2021.126329.

  • 166.

    Lemougna, P.N.; Yliniemi, J.; Ismailov, A.; et al. Recycling lithium mine tailings in the production of low temperature (700–900 °C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties. Constr. Build. Mater. 2019, 221, 332–344. https://doi.org/10.1016/j.conbuildmat.2019.06.078.

  • 167.

    Xiaolong, Z.; Shiyu, Z.; Hui, L.; et al. Disposal of mine tailings via geopolymerization. J. Clean. Prod. 2021, 284, 124756. https://doi.org/10.1016/j.jclepro.2020.124756.

  • 168.

    Slattery, M.; Dunn, J.; Kendall, A. Transportation of electric vehicle lithium-ion batteries at end-of-life: A literature review. Resour. Conserv. Recycl. 2021, 174, 105755. https://doi.org/10.1016/j.resconrec.2021.105755.

  • 169.

    Li, J.; Lu, Y.; Yang, T.; et al. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes—A Green and Sustainable Manufacturing System. iScience 2020, 23, 101081. https://doi.org/10.1016/j.isci.2020.101081.

  • 170.

    EUR-Lex. Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC (Text with EEA Relevance); Official Journal of the European Union: Luxembourg, 2018.

  • 171.

    Chen, X.; Cao, L.; Kang, D.; et al. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Waste Manag. 2018, 80, 198–210. https://doi.org/10.1016/j.wasman.2018.09.013.

  • 172.

    Rissman, J.; Bataille, C.; Masanet, E.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. https://doi.org/10.1016/j.apenergy.2020.114848.

Share this article:
How to Cite
Pedroso, A. F. V.; Martins, M. D.; Regattieri, C. R.; Pinto, I. M.; Silva, F. J. G. Lithium in Energy Storage: A Comprehensive Review of Its Extraction, Utilisation, and Sustainability. Journal of Mechanical Engineering and Manufacturing 2026, 2 (1), 3. https://doi.org/10.53941/jmem.2026.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.