2510002055
  • Open Access
  • Article

Using Systematic Layout Planning together with Analytic Hierarchy Process to Define a New Industrial Layout in the Automotive Industry: A Novel Approach

  • Rodrigo Lopes 1,   
  • Arnaldo G. Pinto 1,   
  • Isabel M. Pinto 1, 2, *,   
  • Maria Teresa Pereira 1, 3,   
  • Alexandra Gavina 1, 2,   
  • Isabel Figueiredo 1, 2,   
  • Ana Júlia Viamonte 1, 2

Received: 14 Sep 2025 | Revised: 22 Oct 2025 | Accepted: 30 Oct 2025 | Published: 06 Jan 2026

Abstract

The automotive sector is marked by intense competition, technological innovation, and a continuous need to improve efficiency, cut costs, and ensure responsible operations. In this scenario, industrial layout planning plays a crucial role, as it directly affects internal motion, logistical efficiency, and the ability to adjust to new challenges. This work addresses the requirement for an organization to create a new production area to meet its strategic growth demands. The research incorporated the Systematic Layout Planning (SLP) approach to formulate layout options and the Analytic Hierarchy Process (AHP) to assist in multi-criteria decision-making, taking into account factors such as operational efficiency, adaptability, safety, and sustainability. The data collected demonstrates the effectiveness of using SLP and AHP together as an organized approach to aid strategic decisions in the industrial sector. In addition to providing concrete answers to the company used to validate this approach, this study strengthens the scientific basis that proves that these tools, when used together, form a reliable framework for improving factory layouts in the automotive industry. The novelty of this paper lies in the hybrid application of Lean philosophy and its methods, combined with SLP and the AHP. By applying Lean principles, namely reducing possible waste to each alternative prior to the SLP and AHP comparative analysis across criteria, the approach yields more targeted and impactful results aligned with the main goals of any company. This contribution is especially significant because, unlike most research that focuses on changing existing layouts, the methodologies were successfully implemented in this case in the planning of a new automotive components production unit from the outset, filling an important gap in the literature and highlighting the relevance of economic and environmental sustainability.

References 

  • 1.

    Park, J.; Lee, C.; Oh, S.C.; et al. Multi-objective optimization for layout planning of matrix manufacturing system. Int. J. Precis. Eng. Manuf.-Green Tech. 2025, 12, 1049–1067. https://doi.org/10.1007/s40684-025-00696-2.

  • 2.

    Hu, F.; Wang, C.; Wu, X. Generative Artificial Intelligence-Enabled Facility Layout Design Paradigm. Appl. Sci. 2025, 15, 5697. https://doi.org/10.3390/app15105697.

  • 3.

    Muther, R.; Hales, L. Systematic Layout Planning, 4th ed.; Management & Industrial Research Publications: Marietta, GA, USA, 2015. ISBN-13: 978-0-933684-06-5.

  • 4.

    Drira, A.; Pierreval, H.; Hajri-Gabouj, S. Facility layout problems: A survey. Annu. Rev. Control 2007, 31, 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001.

  • 5.

    Barnwal, S.; Dharmadhikari, P. Optimization of Plant Layout Using SLP Method. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 3008–3015. https://doi.org/10.15680/IJIRSET.2016.0503046.

  • 6.

    Nyati, V.; Jaybhaye, M.D.; Sardar, V. Optimization of facility layout for improvement in productivity. In Proceedings of the 4th International Conference on Industrial Engineering (ICIE 2017) AT: S.V. National Institute of Technology, SURAT, Surat, Gujrat, India, 21–23 December 2017.

  • 7.

    Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.

  • 8.

    Saaty, T.L. Decision making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. https://doi.org/10.1504/IJSSCI.2008.017590.

  • 9.

    Arunyanart, S.; Pruekthaisong, S. Selection of multi-criteria plant layout design by combining AHP and DEA methodologies. MATEC Web Conf. 2018, 192, 01033. https://doi.org/10.1051/matecconf/201819201033.

  • 10.

    Chen, W.; Liu, C.; Huang, X.; et al. SLP Approach Based Facility Layout Optimization: An Empirical Study. Sci. J. Bus. Manag. 2016, 4, 172–180. https://doi.org/10.11648/j.sjbm.20160405.15.

  • 11.

    Qamar, A.; Al Meanazel, O.; Alalawin, A.; et al. Optimization of Plant Layout in Jordan Light Vehicle Manufacturing Company. J. Inst. Eng. Ser. C 2020, 101, 721–728. https://doi.org/10.1007/s40032-020-00576-5.

  • 12.

    Hakim, I.; Salsabila, D.; Prajadhiana, K. Layout improvement design to reduce material handling cost by using the systematic layout planning method in the MSME industry. J. Sist. Dan Manaj. Ind. 2025, 9, 43–54. https://doi.org/10.30656/jsmi.v9i1.9212.

  • 13.

    Kittipanya-ngam, P.; Sitthibrun, S.; Sirikasemsuk, K. Comparison of Plant Layout Using CORELAP, ALDEP and SLP Methodology: Case Study of Printed Circuit Board Manufacturing Plant. Eng. Technol. Horiz. 2022, 39, 121–137.

  • 14.

    Mendoza-Ortega, G.P.; Torregroza-Espinoza, A.; Jaraba-Amaya, A.L.; et al. Strategic Plant Redesign in the Glass Industry: A Case Study Applying SLP and Discrete Simulation. Appl. Sci. 2025, 15, 7028; https://doi.org/10.3390/app15137028.

  • 15.

    Maina, E.; Muchiri, P.; Keraita, J. Improvement of Facility Layout Using Systematic Layout Planning. IOSR J. Eng. 2018, 8, 33–43.

  • 16.

    Potadar, O.; Kadam, G. Development of Facility Layout for Medium-Scale Industry Using Systematic Layout Planning. In Proceedings of International Conference on Intelligent Manufacturing and Automation (ICIMA 2018), Lecture Notes in Mechanical Engineering, Mumbai, India, 5 November 2018; Springer: Singapore, 2019; pp. 473–483. https://doi.org/10.1007/978-981-13-2490-1_43.

  • 17.

    Wilsten, J.P.; Shayan, E. Layout Design of a Furniture Production Line Using Formal Methods. J. Ind. Syst. Eng. 2007, 1, 81–96.

  • 18.

    Hadi-Vencheh, A.; Mohamadghasemi, A. An integrated AHP–NLP methodology for facility layout design. J. Manuf. Syst. 2013, 32, 40–45. https://doi.org/10.1016/j.jmsy.2012.07.009.

  • 19.

    Antoniolli, I.; Guariente, P.; Pereira, T.; et al. Standardization and optimization of an automotive components production line. Procedia Manuf. 2017, 13, 1120–1127. https://doi.org/10.1016/j.promfg.2017.09.173.

  • 20.

    Neves, P.; Silva, F.J.G.; Ferreira, L.P.; et al. Implementing Lean Tools in the Manufacturing Process of Trimmings Products. Procedia Manuf. 2018, 17, 696–704. https://doi.org/10.1016/j.promfg.2018.10.119.

  • 21.

    Freitas, A.M.; Silva, F.J.G.; Ferreira, L.P.; et al. Improving efficiency in a hybrid warehouse: A case study. Procedia Manuf. 2019, 38, 1074–1084. https://doi.org/10.1016/j.promfg.2020.01.195.

  • 22.

    Mårdberg, P.; Fredby, J.; Engström, K.; et al. A novel tool for optimization and verification of layout and human logistics in digital factories. Procedia CIRP 2018, 72, 545–550. https://doi.org/10.1016/j.procir.2018.03.158.

  • 23.

    D’Antonio, G.; Saja, A.; Ascheri, A.; et al. An integrated mathematical model for the optimization of hybrid process–product layouts. J. Manuf. Syst. 2018, 46, 179–192. https://doi.org/10.1016/j.jmsy.2017.12.003.

  • 24.

    Gopinath, V.; Ore, F.; Johansen, K. Safe assembly cell layout through risk assessment—An application with hand guided industrial robot. Procedia CIRP 2017, 63, 430–435. https://doi.org/10.1016/j.procir.2017.03.160.

  • 25.

    Horta, M.; Coelho, F.; Relvas, S. Layout design modelling for a real world just-in-time warehouse. Comput. Ind. Eng. 2016, 101, 1–9. https://doi.org/10.1016/j.cie.2016.08.013.

  • 26.

    Rakesh, V.; Adil, G.K. Layout optimization of a three-dimensional order picking warehouse. IFAC-PapersOnLine 2015, 48, 1155–1160. https://doi.org/10.1016/j.ifacol.2015.06.240.

  • 27.

    Ribeiro, R.; Silva, F.J.G.; Pinto, A.G.; et al. Designing a Novel System for the Introduction of Lubricant in Control Cables for the Automotive Industry. Procedia Manuf. 2019, 38, 715–725. https://doi.org/10.1016/j.promfg.2020.01.096.

  • 28.

    Teles, C. Otimização de Layouts e Fluxos Produtivos. Master’s Thesis, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 2017.

  • 29.

    Oliveira, M.; Fontes, D.B.M.M.; Pereira, T. Evaluating vehicle painting plans in an automobile assembly plant using an integrated AHP-PROMETHEE approach. Int. Trans. Oper. Res. 2018, 25, 1383–1406. https://doi.org/10.1111/itor.12179.

Share this article:
How to Cite
Lopes, R.; Pinto, A. G.; Pinto, I. M.; Pereira, M. T.; Gavina, A.; Figueiredo, I.; Viamonte, A. J. Using Systematic Layout Planning together with Analytic Hierarchy Process to Define a New Industrial Layout in the Automotive Industry: A Novel Approach. Journal of Mechanical Engineering and Manufacturing 2026, 2 (1), 6. https://doi.org/10.53941/jmem.2026.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.