2512002415
  • Open Access
  • Article

CO2 Laser as a Sustainable Alternative for the Mitigation of Sanitary Ware Manufacturing Defects

  • Rúben D. F. S. Costa 1, 2, *,   
  • Luís M. P. Durão 3,   
  • Arnaldo M. G. Pinto 3,   
  • José R. Ferreira 4,   
  • Naiara P. V. Sebbe 2, 3,   
  • Alexandra A. Gavina 3,   
  • Isabel Figueiredo 3

Received: 11 Sep 2025 | Revised: 22 Oct 2025 | Accepted: 01 Dec 2025 | Published: 05 Feb 2026

Abstract

The development of society through the centuries led to the improvement of healthcare and hygiene conditions throughout the world and, thus, the generalization of ceramic sanitary ware. Indeed, this industry possesses a huge financial impact on the global economy, employing thousands of people worldwide. In spite of their high production levels and increased efficiency, the sanitary ware manufacturing process is still characterized by some defects which make the commercialization of these products unfeasible. Currently, these flaws are rectified by a refiring in the kiln; however the defective parts occupy space intended for new ones to be produced and there is a high chance of new defects arising or the component to break due to the excessive heat of a second firing, hugely increasing the production costs. Accordingly, in this article a sustainable alternative is proposed, using a CO2 laser to repair only the defect area, thus leaving the remaining part untouched. Several laser parameters were tested in experimental tests of two different kinds of defects, using quantitative and qualitative analysis methods, through colour difference reading (with an ANOVA approach), and the optical microscope, SEM-EDS and chemical analyses, respectively. The best results considering defects provoked on a white coloured part were obtained with the manual firing for a laser power between 50 and 70 W, and an interaction time of 1 to 3 firings of 10 s each. These values apply for both pinholes and fissures, with a 50 W power and an interaction of 30 s being the best.

References 

  • 1.

    Delgado, J.M.P.Q.; De Lima, A.G.B. Advanced Structured Materials Transport Processes and Separation Technologies; Springer: Berlin/Heidelberg, Germany, 2021.

  • 2.

    Callister, W.D.; Rethwisch, D.G. Fundamentals of Materials Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2022.

  • 3.

    Ccedil;aşin, E.; Derin Coşkun, N.; Işik, C.E. Detection and characterization of some glaze faults encountered in sanitary wares. J. Sci. Rep.-A 2023, 054, 108–124.

  • 4.

    Keshavarz, Z.; Mostofinejad, D. Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Constr. Build. Mater. 2019, 195, 218–230. https://doi.org/10.1016/j.conbuildmat.2018.11.033.

  • 5.

    Kim, K.; Kim, K.; Hwang, J. LCD waste glass as a substitute for feldspar in the porcelain sanitary ware production. Ceram. Int. 2015, 41, 7097–7102. https://doi.org/10.1016/J.CERAMINT.2015.02.018.

  • 6.

    Fortuna, A.; Fortuna, D.M.; Martini, E. An industrial approach to ceramics: Sanitaryware. Plinius 2017, 43, 138–145.

  • 7.

    Pradell, T.; Molera, J. Ceramic technology. How to characterise ceramic glazes. Archaeol. Anthropol. Sci. 2020, 12, 189. https://doi.org/10.1007/S12520-020-01136-9/FIGURES/10.

  • 8.

    De Miranda, S.; Patruno, L.; Ricci, M.; et al. Ceramic sanitary wares: Prediction of the deformed shape after the production process. J. Mater. Process. Technol. 2015, 215, 309–319. https://doi.org/10.1016/j.jmatprotec.2014.07.025.

  • 9.

    Ricci, M.; Patruno, L.; de Miranda, S.; et al. A numerical strategy for predicting the mould of ceramic sanitary wares. Int. J. Adv. Manuf. Technol. 2017, 90, 2233–2241. https://doi.org/10.1007/s00170-016-9534-z.

  • 10.

    Bazargan, H.; Dehghanzadeh, A. Modeling Pinhole Phenomenon in Sanitary Porcelains Case Study: Isatis Sanitary Porcelain Plant, Yazd, Iran. J. Stat. Theory Appl. 2018, 17, 572–586.

  • 11.

    Lv, J.; Gu, F.; Zhang, W.; et al. Life cycle assessment and life cycle costing of sanitary ware manufacturing: A case study in China. J. Clean. Prod. 2019, 238, 117938. https://doi.org/10.1016/j.jclepro.2019.117938.

  • 12.

    Romagnoli, M.; Burani, M.; Tari, G.; et al. A non-destructive method to assess delamination of ceramic tiles. J. Eur. Ceram. Soc. 2007, 27, 1631–1636. https://doi.org/10.1016/j.jeurceramsoc.2006.05.069.

  • 13.

    Kavanová, M.; Kloužková, A.; Kloužek, J. Characterization of the interaction between glazes and ceramic bodies. Ceram. Silik. 2017, 61, 267–275. https://doi.org/10.13168/cs.2017.0025.

  • 14.

    Monteiro, R.P.; Bastos-Filho, C.J.A. Detecting Defects in Sanitary Wares Using Deep Learning. In Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guayaquil, Ecuador, 11–15 November 2019.

  • 15.

    Hanzaei, S.H.; Afshar, A.; Barazandeh, F. Automatic detection and classification of the ceramic tiles’ surface defects. Pattern Recognit. 2017, 66, 174–189. https://doi.org/10.1016/j.patcog.2016.11.021.

  • 16.

    Kesharaju, M.; Nagarajah, R.; Zhang, T.; et al. Ultrasonic sensor based defect detection and characterisation of ceramics. Ultrasonics 2014, 54, 312–317. https://doi.org/10.1016/j.ultras.2013.07.018.

  • 17.

    Bao, N.; Ran, X.; Wu, Y.; et al. Design of inspection system of glaze defect on the surface of ceramic pot based on machine vision. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017.

  • 18.

    Teng, B.; Zhao, H.; Jia, P.; et al. Research on ceramic sanitary ware defect detection method based on improved vgg network. J. Phys. Conf. Ser. 2020, 1650, 022084.

  • 19.

    Desole, M.P.; Fedele, L.; Gisario, A.; et al. Life Cycle Assessment (LCA) of ceramic sanitaryware: Focus on the production process and analysis of scenario. Int. J. Environ. Sci. Technol. 2024, 21, 1649–1670. https://doi.org/10.1007/s13762-023-05074-6.

  • 20.

    Wang, D.; Yu, C.; Ma, J.; et al. Densification and crack suppression in selective laser melting of pure molybdenum. Mater. Des. 2017, 129, 44–52. https://doi.org/10.1016/j.matdes.2017.04.094.

  • 21.

    Goulas, A.; Friel, R.J. Laser sintering of ceramic materials for aeronautical and astronautical applications. In Laser Additive Manufacturing: Materials, Design, Technologies, and Applications; Woodhead Publishing: Cambridge, UK, 2017; pp. 373–398.

  • 22.

    Basile, N.; Gonon, M.; Petit, F.; et al. Processing of a glass ceramic surface by selective focused beam laser treatment. Ceram. Int. 2016, 42, 1720–1727. https://doi.org/10.1016/j.ceramint.2015.09.129.

  • 23.

    Mahmod, D.S.A.; Khan, A.A.; Munot, M.A.; et al. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells. In Proceedings of the 14th International Symposium on Advanced Materials, Islamabad, Pakistan, 12–16 October 2015.

  • 24.

    Rodríguez-López, S.; Comesaña, R.; del Val, J.; et al. Laser cladding of glass-ceramic sealants for SOFC. J. Eur. Ceram. Soc. 2015, 35, 4475–4484. https://doi.org/10.1016/j.jeurceramsoc.2015.08.009.

  • 25.

    Silva, F. Tecnologia da Soldadura—Uma Abordagem Técnico-Didática, 2nd ed.; Publindústria, Edições Técnicas, Lda.: Porto, Portugal, 2014.

  • 26.

    Mori, T.; Takeuchi, K.; Yoshinaga, I.; et al. Sanitary Ware and Method of Manufacturing Sanitary Ware. U.S. Patent Application No. 16/443,588, 26 December 2019.

  • 27.

    Instituto Português da Qualidade. Sanitas e Conjunto Sanita e Autoclismo Com Sizrado; Instituto Português da Qualidade: Caparica, Portugal, 2017.

  • 28.

    BS EN ISO 10545-11:1996; Crazing Resistance of Tiles—Test Method. British Standards Institution: London, UK, 1996.

  • 29.

    Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; et al. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3.e1–12.e1.

  • 30.

    Topateş, G.; Tarhan, B.; Tarhan, M. Chemical durability of zircon containing glass-ceramic glazes. Ceram. Int. 2017, 43, 12333–12337. https://doi.org/10.1016/j.ceramint.2017.06.097.

  • 31.

    Li, R.; Lv, M.; Cai, J.; et al. Development of sapphirine opaque glazes for ceramic tiles. J. Eur. Ceram. Soc. 2018, 38, 5632–5636. https://doi.org/10.1016/j.jeurceramsoc.2018.08.015.

  • 32.

    Cai, J.; Lv, M.; Guan, K.; et al. () Development of spinel opaque glazes for ceramic tiles. J. Eur. Ceram. Soc. 2018, 38, 297–302. https://doi.org/10.1016/j.jeurceramsoc.2017.07.037.

  • 33.

    Pekkan, K.; Taşçı, E.; Gün, Y. Development of temmoku glazes and their applications onto different tiles under industrial fast firing conditions at 1180 °C. J. Aust. Ceram. Soc. 2020, 56, 489–497. https://doi.org/10.1007/s41779-019-00357-z.

  • 34.

    Tezza, V.B.; Scarpato, M.; Silva, L.F.O.; et al. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 2015, 276, 60–65. https://doi.org/10.1016/j.powtec.2015.01.076.

  • 35.

    Osvay, K.; Képíró, I.; Berkesi, O. Laser treatment of white China surface. Appl. Surf. Sci. 2006, 252, 4516–4522. https://doi.org/10.1016/j.apsusc.2005.07.127.

  • 36.

    Herren, F.; Hofmann, M. Laser Marking of Ceramic Materials, Glazes, Glass Ceramics and Glasses. U.S. Patent No. 5,030,551, 9 July 1991.

  • 37.

    Axtell, E.A.; Kapp, D.C.; Knell, T.A.; et al. Laser Marking Method and Apparatus. US6238847, 29 May 2001.

  • 38.

    Xiong, L.; Wang, C.; Wu, W.; et al. The surface softening mechanism of AlN ceramic by laser treatment. Surf. Interfaces 2024, 46, 104023. https://doi.org/10.1016/j.surfin.2024.104023.

  • 39.

    Cuviella-Suárez, C.; Colmenar-Santos, A.; Borge-Diez, D.; et al. Reduction of water and energy consumption in the sanitary ware industry by an absorption machine operated with recovered heat. J. Clean. Prod. 2021, 292, 126049. https://doi.org/10.1016/j.jclepro.2021.126049.

  • 40.

    Mingione, E.; Marconi, M.; Rubino, G.; et al. Reduction of energy consumption and environmental impact in ceramic sanitary ware production through fluxing agents: A case study. Int. J. Adv. Manuf. Technol. 2025, 139, 2671–2686. https://doi.org/10.1007/s00170-025-16069-7.

Share this article:
How to Cite
Costa, R. D. F. S.; Durão, L. M. P.; Pinto, A. M. G.; Ferreira, J. R.; Sebbe, N. P. V.; Gavina, A. A.; Figueiredo, I. CO2 Laser as a Sustainable Alternative for the Mitigation of Sanitary Ware Manufacturing Defects. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.