2512002417
  • Open Access
  • Review

Doping Strategies for TiAlN-Based Cutting Tool Coatings: Progress and Perspectives

  • Gustavo F. Pinto 1, 2, *,   
  • Francisco J.G. Silva 1, 2,   
  • Eduardo Silva 3,   
  • Naiara P. V. Sebbe 1, 4,   
  • Ricardo Alexandre 5,   
  • Filipe Fernandes 1, 6,   
  • Andresa Baptista 1, 2

Received: 22 Oct 2025 | Revised: 18 Nov 2025 | Accepted: 01 Dec 2025 | Published: 09 Feb 2026

Abstract

The continuous technological evolution of industry has intensified the role of machining processes, directly influencing product quality and industrial demands. Research in this field has long focused on friction during machining and the benefits of coatings in reducing energy consumption, improving workpiece quality, and extending tool life. Coated tools have been developed to overcome critical challenges, including thermal stability, corrosion resistance at elevated temperatures, and wear resistance under high speed machining. To meet these requirements, coating technologies have advanced, with methods such as CVD, PVD, and hybrid deposition gaining prominence. However, systematic evaluations of the performance evolution of TiAlN-based coatings doped with additional elements still require some attention from researchers. This review addresses that gap by examining the development of TiAlN coatings doped with elements like Mo, Si, Y, Ta, and Cr, as well as their combinations. It also discusses deposition techniques, thin film technologies, and their influence on coating performance. Finally, the paper outlines current trends, future research opportunities, and open challenges, providing insights relevant to both academy and industry.

References 

  • 1.

    Sousa, V.F.C.; Silva, F.J.G.; Pinto, G.F.; et al. Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals 2021, 11, 260.

  • 2.

    Kulkarni, B.H.; Nadakatti, M.M.; Kulkarni, S.C.; et al. Investigations on effect of nanofluid based minimum quantity lubrication technique for surface milling of Al7075-T6 aerospace alloy. Mater. Today Proc. 2020, 27, 251–256.

  • 3.

    Mersni, W.; Boujelbene, M.; Salem, S.B.; et al. Machining time and quadratic mean roughness optimization. Mater. Today Proc. 2020, 26, 2619–2624.

  • 4.

    Gabiccini, M.; Bracci, A.; Battaglia, E. On the estimation of continuous mappings from cradle-style to 6-axis machines for face-milled hypoid gear generation. Mech. Mach. Theory 2011, 46, 1492–1506.

  • 5.

    Moriya, T.; Nakamoto, K.; Ishida, T.; et al. Creation of V-shaped microgrooves with flat-ends by 6-axis control ultraprecision machining. CIRP Ann. 2010, 59, 61–66.

  • 6.

    Özlü, B.; Ulaş, H.B.; Kara, F. Investigation of the Effects of Cutting Tool Coatings and Machining Conditions on Cutting Force, Specific Energy Consumption, Surface Roughness, Cutting Temperature, and Tool Wear in the Milling of Ti6Al4V Alloy. Lubricants 2025, 13, 363.

  • 7.

    Sharma, N.; Chawla, V.; Ram, N. Computer numerical control machine. Int. J. Data Network Sci. 2020, 4, 1–14.

  • 8.

    Wu, Y.; Yue, N.; Qien, K. Performance optimization of CNC machine tool system based on sensor data. Sci. Program. 2022, 2022, 5663824.

  • 9.

    Siddiqui, T.U.; Singh, S.K. Design, fabrication and characterization of a self-lubricated textured tool in dry machining. Mater. Today Proc. 2020, 41, 863–869.

  • 10.

    Dittrich, M.A.; Uhlich, F.; Denkena, B. Self-optimizing tool path generation for 5-axis machining processes. CIRP J. Manuf. Sci. Technol. 2019, 24, 49–54.

  • 11.

    Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; et al. Artificial intelligence systems for tool condition monitoring in machining: Analysis and critical review. J. Intell. Manuf. 2022, 34, 2079–2121.

  • 12.

    Serin, G.; Sener, B.; Ozbayoglu, A.M.; et al. Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 2020, 109, 953–974.

  • 13.

    Zhang, X.; Han, C.; Luo, M.; et al. Tool wear monitoring for complex part milling based on deep learning. Appl. Sci. 2020, 10, 6916.

  • 14.

    Proteau, A.; Tahan, A.; Thomas, M. Specific cutting energy: A physical measurement for representing tool wear. Int. J. Adv. Manuf. Technol. 2019, 103, 101–110.

  • 15.

    Ravikumar, S.; Ramachandran, K. Tool wear monitoring of multipoint cutting tool using sound signal features signals with machine learning techniques. Mater. Today Proc. 2018, 5, 25720–25729.

  • 16.

    Saw, L.H.; Ho, L.W.; Yew, M.C.; et al. Sensitivity analysis of drill wear and optimization using adaptive neuro fuzzy-genetic algorithm technique toward sustainable machining. J. Clean. Prod. 2018, 172, 3289–3298.

  • 17.

    Kothuru, A.; Nooka, S.P.; Liu, R. Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. Int. J. Adv. Manuf. Technol. 2018, 95, 3797–3808.

  • 18.

    Ferrando Chacón, J.L.; Fernández de Barrena, T.; García, A.; et al. A novel machine learning-based methodology for tool wear prediction using acoustic emission signals. Sensors 2021, 21, 5984.

  • 19.

    Pinto, G. Experimental Study on PVD DC Sputtering Thin Films: Efficiency, Coating Properties, And Wear Tools Performance on Milling Pre-Hardness Tools Steels. Ph.D. Thesis, University of Vigo, Vigo, Spain, 2024.

  • 20.

    Kamar, M.T.; Elattar, H.; Mahmoud, A.S.; et al. A Critical Review of State-of-the-Art Technologies for Electroplating Wastewater Treatment. Int. J. Environ. Anal. Chem. 2022, 104, 4143–4176. https://doi.org/10.1080/03067319.2022.2098486.

  • 21.

    Kumar, V.; Dwivedi, S.K. Toxicity Potential of Electroplating Wastewater and Its Bioremediation Approaches: A Review. Environ. Technol. Rev. 2021, 10, 238–254.

  • 22.

    Comparini, A.; Del Pace, I.; Giurlani, W.; et al. Electroplating on Al6082 Aluminium: A New Green and Sustainable Approach. Coatings 2022, 13, 13.

  • 23.

    Passaponti, M.; Lari, L.; Bonechi, M.; et al. Optimisation Study of Co Deposition on Chars from MAP of Waste Tyres as Green Electrodes in ORR for Alkaline Fuel Cells. Energies 2020, 13, 5646.

  • 24.

    Mariani, E.; Giurlani, W.; Bonechi, M.; et al. A Systematic Study of Pulse and Pulse Reverse Plating on Acid Copper Bath for Decorative and Functional Applications. Sci. Rep. 2022, 12, 18175.

  • 25.

    Giurlani, W.; Dell’Aquila, V.; Vizza, M.; et al. Electrodeposition of Nanoparticles and Continuous Film of CdSe on N-Si (100). Nanomaterials 2019, 9, 1504.

  • 26.

    Giurlani, W.; Fidi, A.; Anselmi, E.; et al. Specific Ion Effects on Copper Electroplating. Colloids Surf. B Biointerfaces 2023, 225, 113287.

  • 27.

    Martinuzzi, S.M.; Donati, L.; Giurlani, W.; et al. A Comparative Research on Corrosion Behavior of Electroplated and Magnetron Sputtered Chromium Coatings. Coatings 2022, 12, 257.

  • 28.

    Kelly, P.J.; Arnell, R.D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum 2000, 56, 159–172.

  • 29.

    Baptista, A.; Silva, F.; Porteiro, J.; et al. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402.

  • 30.

    Baptista, A. Efficiency, coating properties, and machining performance of thin films deposited using HiPIMS: An experimental analysis. Ph.D. Thesis, University of Vigo, Vigo, Spain, 2024.

  • 31.

    Faraday, M.X. The Bakerian Lecture. Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. Lond. 1857, 147, 145–181.

  • 32.

    Nahrwold, R. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Ann. Physik 1887, 31, 467.

  • 33.

    Holland, L. Vacuum Deposition of Thin Films; Chapman & Hall: London, UK, 1958. ISBN 9780412053801.

  • 34.

    Vorobyova, M.; Biffoli, F.; Giurlani, W.; et al. PVD for decorative applications: A review. Materials 2023, 16, 4919.

  • 35.

    Berghaus, B. Improvements in and Related to the Coating of Articles by Means of Thermally Vapourized Material. UK Patent 510992, 1938.

  • 36.

    Powell, C.F.; Oxley, J.H.; Blocher, J.M. Vapour Deposition; John Wiley & Sons: New York, NY, USA, 1966.

  • 37.

    Jawaid, A.; Koksal, S.; Sharif, S. Cutting Performance and Wear Characteristics of PVD Coated and Uncoated Carbide Tools in Face Milling Inconel 718 Aerospace Alloy. J. Mater. Process. Technol. 2001, 116, 2–9.

  • 38.

    Ichou, H.; Arrousse, N.; Berdimurodov, E.; et al. Exploring the Advancements in Physical Vapor Deposition Coating: A Review. J. Bio Tribo Corros. 2024, 10, 3.

  • 39.

    Rossnagel, S.M. Sputter Deposition for Semiconductor Manufacturing. IBM J. Res. Dev. 1999, 43, 163–179.

  • 40.

    Baptista, A.; Pinto, G.; Silva, F.J.G.; et al. Wear Characterization of Chromium PVD Coatings on Polymeric Substrate for Automotive Optical Components. Coatings 2021, 11, 555.

  • 41.

    Bandinelli, R.; Fani, V.; Bindi, B. Electroplating and PVD Finishing Technologies in the Fashion Industry: Perspectives and Scenarios. Sustainability 2021, 13, 4453.

  • 42.

    New York University; Office of Special Services for Business and Industry; American Vacuum Society; Vacuum Metallurgy Division. Transactions of the Vacuum Metallurgy Conference, 8th ed.; New York University Press: New York, NY, USA, 1966.

  • 43.

    Bunshah, R.F. New Trends in Materials Processing; American Society for Metals: Metals Park, OH, USA, 1976.

  • 44.

    Paton, B.A.; Movchan, B.A.; Demchishin, A.V. Structure and Properties of Electron-Beam Evaporated Massive Vacuum Deposits. In Proceedings of the 4th International Conference on Vacuum Metallurgy, Tokyo, Japan, 4–8 June 1973; p. 251.

  • 45.

    Mattox, D.M.; McDonald, J.E. Interface Formation during Thin Film Deposition. J. Appl. Phys. 1963, 34, 2493–2494.

  • 46.

    Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing Film Formation, Adhesion, Surface Preparation and Contamination Control; Knovel: Norwich, NY, USA, 1998.

  • 47.

    Rubshtein, A.P.; Vladimirov, A.B.; Korkh, Y.V.; et al. The composition, structure and surface properties of the titanium-carbon coatings prepared by PVD technique. Surf. Coat. Technol. 2017, 309, 680–686.

  • 48.

    Silva, F.J.G.; Martinho, R.P.; Alexandre, R.; et al. Wear resistance of TiAlSiN thin coatings. J. Nanosci. Nanotechnol. 2012, 12, 9094–9101.

  • 49.

    Sam, Z. Thin Films and Coatings: Toughening and Toughness Characterization, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 377–463.

  • 50.

    Silva, F.J.G.; Neto, M.A.; Fernandes, A.J.S.; et al. Adhesion and wear behaviour of NCD coatings on Si3N4 by micro-abrasion tests. J. Nanosci. Nanotechnol. 2009, 9, 3938–3943.

  • 51.

    Martinho, R.P.; Silva, F.J.G.; Alexandre, R.J.D.; et al. TiB2 Nanostructured coating for GFRP injection moulds. J. Nanosci. Nanotechnol. 2011, 11, 5374–5382.

  • 52.

    Musil, J. Flexible hard nanocomposite coatings. RSC Adv. 2015, 5, 60482–60495.

  • 53.

    Yang, Q.; Zhao, L.R. Microstructure, mechanical and tribological properties of novel multi-component nanolayered nitride coatings. Surf. Coat. Technol. 2005, 200, 1709–1713.

  • 54.

    Veprek, S.; Veprek-Heijman, M.G.J.; Karvankova, P.; et al. Different approaches to super hard coatings and nanocomposites. Thin Solid Films 2005, 476, 1–29.

  • 55.

    Silva, F.J.G.; Martinho, R.P.; Baptista, A.P.M. Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings. Thin Solid Films 2014, 550, 278–284.

  • 56.

    Martinho, R.P.; Andrade, M.F.C.; Silva, F.J.G.; et al. Microabrasion wear behaviour of TiAlCrSiN nanostructured coatings. Wear 2009, 267, 1160–1165.

  • 57.

    Mubarak, A.M.A.; Hamzah, E.H.E.; Tofr, M.T.M. Review of Physical Vapour Deposition (PVD) Techniques for Hard Coating. Jurnal Mekanikal 2005, 20, 42–51.

  • 58.

    Mattox, D.M. The Foundations of Vacuum Coating Technology; Noyes Publications: Norwich, UK, 2003.

  • 59.

    Martin, P.M. Handbook of Deposition Technologies for Films and Coatings, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2010.

  • 60.

    Holmberg, K.; Matthews, A. Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009; p. 576.

  • 61.

    Tracton, A.A. Coatings Technology Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006.

  • 62.

    Tracton, A.A. Coatings Technology: Fundamentals, Testing, and Processing Techniques; CRC Press: Boca Raton, FL, USA, 2007; pp. 238–284.

  • 63.

    Baptista, A.; Silva, F.J.G.; Porteiro, J.; et al. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757.

  • 64.

    Michailidis, N. Variations in the cutting performance of PVD-coated tools in milling Ti6Al4V, explained through temperature-dependent coating properties. Surf. Coat. Technol. 2016, 304, 325–329.

  • 65.

    Inspektor, A.; Salvador, P.A. Architecture of PVD coatings for metalcutting applications: A review. Surf. Coat. Technol. 2014, 257, 138–153.

  • 66.

    Nunes, V.; Silva, F.J.G.; Andrade, M.F.; et al. Increasing the lifespan of high-pressure die cast molds subjected to severe wear. Surf. Coat. Technol. 2017, 332, 319–331.

  • 67.

    Vereschaka, A.; Kataeva, E.; Sitnikov, N.; et al. Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl)N on Tool Life of Metal Cutting Tools at Various Cutting Speeds. Coatings 2018, 8, 44.

  • 68.

    Momeni, S.; Tillmann, W. Investigation of the self-healing sliding wear characteristics of NiTi-based PVD coatings on tool steel. Wear 2016, 368, 53–59.

  • 69.

    Hu, N.; Khan, M.; Wang, Y.; et al. Effect of Microstructure on the Thermal Conductivity of Plasma Sprayed Y2O3 Stabilized Zirconia (8% YSZ). Coatings 2017, 7, 198.

  • 70.

    Kim, M.; Kim, S.; Kim, T.; et al. Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings 2017, 7, 231.

  • 71.

    Maity, S. Optimization of processing parameters of in-situ polymerization of pyrrole on woollen textile to improve its thermal conductivity. Prog. Org. Coat. 2017, 107, 48–53.

  • 72.

    Krella, A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review. Coatings 2020, 10, 921.

  • 73.

    Duminica, F.D.; Belchi, R.; Libralesso, L.; et al. Investigation of Cr(N)/DLC Multilayer Coatings Elaborated by PVD for High Wear Resistance and Low Friction Applications. Surf. Coat. Technol. 2018, 337, 396–403.

  • 74.

    Meier, S.M.; Gupta, D.K. The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications. J. Eng. Gas Turbine Power 1994, 116, 250–257.

  • 75.

    Ferreira, A.A.; Silva, F.J.G.; Pinto, A.G.; et al. Characterization of Thin Chromium Coatings Produced by PVD Sputtering for Optical Applications. Coatings 2021, 11, 215.

  • 76.

    Sun, Z.; He, G.; Meng, Q.; et al. Corrosion Mechanism Investigation of TiN/Ti Coating and TC4 Alloy for Aircraft Compressor Application. Chin. J. Aeronaut. 2020, 33, 1824–1835.

  • 77.

    Natrayan, L.; Balaji, S.; Bharathiraja, G.; et al. Experimental Investigation on Mechanical Properties of TiAlN Thin Films Deposited by RF Magnetron Sputtering. J. Nanomater. 2021, 2021, 5943486.

  • 78.

    Singh, J.; Wolfe, D.E. Review Nano and Macro-Structured Component Fabrication by Electron Beam-Physical Vapor Deposition (EB-PVD). J. Mater. Sci. 2005, 40, 1–26.

  • 79.

    Kapopara, J.M.; Mengar, A.R.; Chauhan, K.V.; et al. Modelling and Analysis of Sputter Deposited ZrN Coating by CFD. In Proceedings of the IConAMMA 2016 International Conference on Advances in Materials and Manufacturing Applications, Bangalore, India, 14–16 July 2016; p. 012205.

  • 80.

    Moll, E.; Bergmann, E. Hard Coatings by Plasma-Assisted PVD Technologies: Industrial Practice. Surf. Coat. Technol. 1989, 37, 483–509.

  • 81.

    Silva, F.J.G.; Baptista, A.P.M.; Pereira, E.; et al. Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers. Diam. Relat. Mater. 2002, 11, 1617–1622.

  • 82.

    Sousa, V.F.C.; Fernandes, F.; Silva, F.J.G.; et al. Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718. Metals 2023, 13, 684.

  • 83.

    Fernandes, F.; Calderon, V.; Ferreira, P.J.; et al. Low peak power deposition regime in HiPIMS: Deposition of hard and dense nanocomposite Ti-Si-N films by DOMS without the need of energetic bombardment. Surf. Coat. Technol. 2020, 397, 125996.

  • 84.

    Rajput, S.; Gangopadhyay, S.; Fernandes, F.; et al. Influence of Ag additions on the structure, mechanical properties and oxidation behaviour of CrAlNAg coatings deposited by sputtering. Surf. Coat. Technol. 2021, 426, 127767.

  • 85.

    Sousa, V.F.C.; Silva, F.J.G.; Lopes, H.; et al. Wear Behavior and Machining Performance of TiAlSiN-Coated Tools Obtained by dc MS and HiPIMS: A Comparative Study. Materials 2021, 14, 5122.

  • 86.

    Sousa, V.F.C.; Silva, F.J.G.; Alexandre, R.; et al. Experimental study on the wear evolution of different PVD coated tools under milling operations of LDX2101 duplex stainless steel. Adv. Manuf. 2023, 11, 158–179.

  • 87.

    Sousa, V.F.C.; Castanheira, C.; Silva, F.J.G.; et al. Wear Behavior of Uncoated and Coated Tools in Milling Operations of AMPCO (Cu-Be) Alloy. Appl. Sci. 2021, 11, 7762.

  • 88.

    Galán-Martínez, A.D.; Santiago-Alvarado, A.; González-García, J.; et al. Analysis and Design of a Mechanical System to Use with the Ronchi and Fizeau Tests. In Proceedings of the 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, Porto, Portugal, 22–26 July 2013; Volume 8785, p. 87851Z.

  • 89.

    Ponte, F.; Sharma, P.; Figueiredo, N.M.; et al. Decorative Chromium Coatings on Polycarbonate Substrate for the Automotive Industry. Materials 2023, 16, 2315.

  • 90.

    Skordaris, G.; Bouzakis, K.; Kotsanis, T.; et al. Effect of PVD film’s residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 145–151.

  • 91.

    Silva, F.J.G.; Fernandes, A.J.S.; Costa, F.M.; et al. Tribological behavior of CVD diamond films on steel substrates. Wear 2003, 255, 846–853.

  • 92.

    Damm, D.D.; Contin, A.; Barbieri, F.C.; et al. Interlayers applied to CVD diamond deposition on steel substrate: A review. Coatings 2017, 7, 141.

  • 93.

    Trucchi, D.M.; Bellucci, A.; Girolami, M.; et al. Surface texturing of CVD Diamond assisted by ultra short laser pulses. Coatings 2017, 7, 185.

  • 94.

    Pinto, G.; Silva, F.J.G.; Baptista, A.; et al. A critical review on the numerical simulation related to physical vapour deposition. Procedia Manuf. 2018, 17, 860–869.

  • 95.

    Voottipruex, P.; Bergado, D.T.; Lam, L.G.; et al. Back-analyses of flow parameters of PVD improved soft Bangkok clay with and without vacuum preloading from settlement data and numerical simulations. Geotext. Geomembr. 2014, 42, 457–467.

  • 96.

    Kapopara, J.; Mengar, A.; Chauhan, K.; et al. CFD Analysis of Sputtered TiN Coating. Mater. Today Proc. 2017, 4, 9390–9393.

  • 97.

    Bobzin, K.; Brinkmann, R.; Mussenbrock, T.; et al. Continuum and kinetic simulations of the neutral gas flow in an industrial physical vapor deposition reactor. Surf. Coat. Technol. 2013, 237, 176–181.

  • 98.

    Pinto, G.; Silva, F.; Porteiro, J.; et al. Numerical Simulation Applied to PVD Reactors: An Overview. Coatings 2018, 8, 410.

  • 99.

    Skordaris, G.; Bouzakis, K.; Kotsanis, T.; et al. Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools. Surf. Coat. Technol. 2016, 307, 452–460.

  • 100.

    Pinto, G.F.; Almeida, D.; Silva, F.J.G.; et al. Correlating Cutting Performance and Surface Roughness under Different Bias Using TiAlTaN Coated Milling Tools. J. Mech. Eng. Manuf. 2025, 1, 7.

  • 101.

    Abdullah, M.Z.B.; Ahmad, M.A.; Abdullah, A.N.; et al. Metal release of multilayer coatings by physical vapour deposition (PVD). Procedia Eng. 2016, 148, 254–260.

  • 102.

    Shuai, J.; Zuo, X.; Wang, Z.; et al. Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings. Ceram. Int. 2020, 46, 6672–6681.

  • 103.

    Knotek, O.; Löffler, F.; Krämer, G. Multicomponent and multilayer physically vapour deposited coatings for cutting tools. Surf. Coat. Technol. 1992, 54, 241–248.

  • 104.

    Du, H.; Zhao, H.; Xiong, J.; et al. Effect of interlayers on the structure and properties of TiAlN-based coatings on WC-Co cemented carbide substrate. Int. J. Refract. Met. Hard Mater. 2013, 37, 60–66.

  • 105.

    Kale, A.N.; Ravindranath, K.; Kothari, D.C.; et al. Tribological properties of (Ti, Al)N coatings deposited at different bias voltages using the cathodic arc technique. Surf. Coat. Technol. 2001, 145, 60–70.

  • 106.

    Ürgen, M.; Eryilmaz, O.L.; Çakir, A.F.; et al. Characterization of Molybdenum Nitride Coatings Produced by Arc-PVD Technique. Surf. Coat. Technol. 1997, 94, 501–506.

  • 107.

    Romero, E.C.; Macías, A.H.; Nonell, J.M.; et al. Mechanical and tribological properties of nanostructured TiAlN/TaN coatings deposited by DC magnetron sputtering. Surf. Coat. Technol. 2019, 378, 124941.

  • 108.

    Martinho, R.P. Revestimentos PVD Mono e Multicamada Para Moldes Utilizados na Injecção de Plásticos Reforçados. Master’s Thesis, FEUP, Porto, Portugal, 2009.

  • 109.

    Barshilia, H.C.; Ananth, A.; Khan, J.; et al. Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates. Vacuum 2012, 86, 1165–1173.

  • 110.

    Steimann, P.A.; Hintermann, H.E. Adhesion of TiC and Ti(C, N) coatings on steel. J. Vac. Sci. Technol. A 1985, 3, 2394–2400.

  • 111.

    Lente, H.V.; Til, J.I.V. Articulation of sustainability in the emerging field of nanocoatings. J. Clean. Prod. 2008, 16, 967–976.

  • 112.

    Biswas, B.; Purandare, Y.; Sugumaran, A.; et al. Effect of Chamber Pressure on Defect Generation and Their Influence on Corrosion and Tribological Properties of HIPIMS Deposited CrN/NbN Coatings. Surf. Coat. Technol. 2018, 336, 84–91.

  • 113.

    Gudmundsson, J.T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29, 113001.

  • 114.

    Ghailane, A.; Makha, M.; Larhlimi, H.; et al. Design of Hard Coatings Deposited by HiPIMS and DcMS. Mater. Lett. 2020, 280, 128540.

  • 115.

    Geng, D.; Li, H.; Chen, Z.; et al. Microstructure, Oxidation Behavior and Tribological Properties of AlCrN/Cu Coatings Deposited by a Hybrid PVD Technique. J. Mater. Sci. Technol. 2022, 100, 150–160.

  • 116.

    Greczynski, G.; Jensen, J.; Böhlmark, J.; et al. Microstructure Control of CrNx Films during High Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2010, 205, 118–130.

  • 117.

    Dong, X.; Su, Y.; Wu, Z.; et al. Reactive Pulsed DC Magnetron Sputtering Deposition of Vanadium Oxide Thin Films: Role of Pulse Frequency on the Film Growth and Properties. Appl. Surf. Sci. 2021, 562, 150138.

  • 118.

    Caliskan, H.; Panjan, P.; Kurbanoglu, C. Hard Coatings on Cutting Tools and Surface Finish. In Comprehensive Materials Finishing; Elsevier: Oxford, UK, 2017; Volume 3, pp. 230–242.

  • 119.

    Man, B.Y.; Guzman, L.; Miotello, A.; et al. Microstructure, oxidation and H2-permeation resistance of TiAlN films deposited by DC magnetron sputtering technique. Surf. Coat. Technol. 2004, 180–181, 9–14.

  • 120.

    Hsieh, J.H.; Liang, C.; Yu, C.H.; et al. Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering. Surf. Coat. Technol. 1998, 108–109, 132–137.

  • 121.

    Mitsuo, A.; Uchida, S.; Nihira, N.; et al. Improvement of high-temperature oxidation resistance of titanium nitride and titanium carbide films by aluminum ion implantation. Surf. Coat. Technol. 1998, 103–104, 98–103.

  • 122.

    Yang, K.; Xian, G.; Zhao, H.; et al. Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC–Co cemented carbide substrate by magnetron sputtering. Int. J. Refract. Met. Hard Mater. 2015, 52, 29–35.

  • 123.

    Tomaszewski, Ł.; Gulbiński, W.; Urbanowicz, A.; et al. TiAlN-based wear resistant coatings modified by molybdenum addition. Vacuum 2015, 121, 223–229.

  • 124.

    Yi, J.; Chen, S.; Chen, K.; et al. Effects of Ni content on microstructure, mechanical properties and Inconel 718 cutting performance of AlTiN-Ni nanocomposite coatings. Ceram. Int. 2018, 45, 474–480.

  • 125.

    Liu, Z.R.; Chen, L.; Du, Y.; et al. Influence of Ru-addition on thermal decomposition and oxidation resistance of TiAlN coatings. Surf. Coat. Technol. 2020, 401, 126234.

  • 126.

    Aninat, R.; Valle, N.; Chemin, J.-B.; et al. Addition of Ta and Y in a hard Ti-Al-N PVD coating: Individual and conjugated effect on the oxidation and wear properties. Corros. Sci. 2019, 156, 171–180.

  • 127.

    Chandra, N.G.P.S.; Otsuka, Y.; Mutoh, Y.; et al. Effect of coating thickness on fatigue behavior of TiAlN coated Ti-alloys. Int. J. Fatigue 2020, 140, 105767.

  • 128.

    Das, S.; Guha, S.; Ghadai, R.; et al. A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater. Chem. Phys. 2021, 258, 123866.

  • 129.

    Hogmark, S.; Jacobson, S.; Larsson, M. Design and evaluation of tribological coatings. Wear 2000, 246, 20–33.

  • 130.

    Zhang, M.; Cheng, Y.; Xin, L.; et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy. Corros. Sci. 2020, 166, 108476.

  • 131.

    Çomakli, O. Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceram. Int. 2021, 47, 4149–4156.

  • 132.

    Liu, Y.; Yu, S.; Shi, Q.; et al. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12, 1388.

  • 133.

    Sun, Y.D.; Yan, J.Y.; Zhang, S.; et al. Influence of modulation periods and modulation ratios on the structure and mechanical properties of nanoscale TiAlN/TiB2 multilayers prepared by IBAD. Vacuum 2012, 86, 949–952.

  • 134.

    Shugurov, A.R.; Kazachenok, M.S. Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings. Surf. Coat. Technol. 2018, 353, 254–262.

  • 135.

    Silva, F.J.G.; Fernandes, A.J.S.; Costa, F.M.; et al. A new interlayer approach for CVD diamond coating of steel substrates. Diam. Relat. Mater. 2004, 13, 828–833.

  • 136.

    Shang, H.; Li, J.; Shao, T. Mechanical properties and thermal stability of TiAlN/Ta multilayer film deposited by ion beam assisted deposition. Appl. Surf. Sci. 2014, 310, 317–320.

  • 137.

    Zhao, F.; Ge, Y.; Wang, L.; et al. Tribological and mechanical properties of hardness-modulated TiAlSiN multilayer coatings fabricated by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2020, 402, 126475.

  • 138.

    Baptista, A.; Pinto, G.F.; Sousa, V.F.C.; et al. Studying the Machining Performance of DSS Steel Using Single and Multilayered TiAlSiN Coated Tools Deposited by HiPIMS. In Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems, Proceedings of the FAIM 2023, Porto, Portugal, 18–22 June 2023; Silva, F.J.G., Pereira, A.B., Campilho, R.D.S.G., Eds.; Springer Nature: Cham, Switzerland, 2024.

  • 139.

    Bonu, V.; Jeevitha, M.; Kumar, V.P.; et al. Solid particle erosion and corrosion resistance performance of nanolayered and multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V. Surf. Coat. Technol. 2020, 387, 125531.

  • 140.

    Wang, J.; Yazdi, M.A.P.; Lomello, F.; et al. Influence of microstructures on mechanical properties and tribology behaviors of TiN/TiAlN multilayer coatings. Surf. Coat. Technol. 201620, 441–446.

Share this article:
How to Cite
Pinto, G. F.; Silva, F. J. G.; Silva, E.; Sebbe, N. P. V.; Alexandre, R.; Fernandes, F.; Baptista, A. Doping Strategies for TiAlN-Based Cutting Tool Coatings: Progress and Perspectives. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.