2512002451
  • Open Access
  • Review

Posture Optimization Techniques for Enhanced Robotic Machining Performance: A Review

  • Naiara Sebbe 1, 2,   
  • Jose-Luis Lafuente 3,   
  • Clara Aibar 3,   
  • Ivan Iglesias 4, *

Received: 09 Jul 2025 | Revised: 21 Nov 2025 | Accepted: 04 Dec 2025 | Published: 12 Feb 2026

Abstract

With the advancement of technology and the digitalization of manufacturing processes, optimized production of large-scale structural components faces increasing challenges due to mass product customization, workspace constraints, and the high cost of equipment such as CNC machines. Arm-based robotic manufacturing systems, as a substitutive or complementary alternative with strong potential, have gained significant attention as a means to address current challenges in machining. This work presents a state-of-the-art review of existing techniques and methods for optimizing robotic machining performance, with a particular focus on research advances in posture optimization of articulated robots. These advances are enabling the use of serial robotic arms in material removal operations as a technically and economically viable alternative to conventional machine tools. The document is structured as a comprehensive knowledge recap and systematic analysis of the technical barriers and limitations that affect dimensional quality in robotic machining—primarily due to the limited mechanical stiffness inherent in robotic arms when performing cutting tasks. It compiles and classifies a range of robot posture optimization tools. A SWOT matrix is used to identify the key technical factors that influence the suitability of optimization methods in different industrial contexts. Unlike previous reviews that address posture or dynamics in isolation, this work (i) consolidates posture optimization methods into a practical three-pillar framework (optimize–sense–compensate), (ii) maps methods to a decision-oriented SWOT for industrial selection, and (iii) extends the analysis to collaborative machining, including posture–safety trade-offs under collaborative machining standards.

References 

  • 1.

    Ma, G.C.; Zhao, G.; Li, Z.H.; et al. Optimization strategies for robotic additive and subtractive manufacturing of large and high thin-walled aluminum structures. Int. J. Adv. Manuf. Technol. 2019, 101, 1275–1292.

  • 2.

    Hou, L.Y.; Zhang, Y.Q.; Jing, L.; et al. A comprehensive error evaluation method for non-rigid body gantry machine tools considering quasi-static crosstalk based on optimized multilateration measurement. Measurement 2024, 230, 16.

  • 3.

    How Much Do Industrial Robots Cost? 2023. Available online: https://qviro.com/blog/how-much-do-industrial-robots-cost (accessed on 20 September 2025).

  • 4.

    Titans of CNC. SYIL Machine Tools Price Ranges. Titans of CNC. 2023. Available online: https://titansofcnc.com/collections/syil-machine-tools (accessed on 20 September 2025).

  • 5.

    Raj, P.; Dewangan, P.; Pattnaik, S. Robotic Arm as CNC Machine. Int. J. Res. Publ. Rev. 2025, 6, 4061–4067.

  • 6.

    Makulavičius, M.; Petkevičius, S.; Rožėnė, J.; et al. Industrial Robots in Mechanical Machining: Perspectives and Limitations. Robotics 2024, 12, 160. https://doi.org/10.3390/robotics12060160.

  • 7.

    Gao, Y.; Qiu, T.; Song, C.; et al. Optimizing the performance of serial robots for milling tasks: A review. Robot. Comput.-Integr. Manuf. 2025, 94, 102977. https://doi.org/10.1016/j.rcim.2025.102977.

  • 8.

    Pedroso, A.F.V.; Sebbe, N.P.V.; Silva, F.J.G.; et al. An overview on the recent advances in robot-assisted compensation methods used in machining lightweight materials. Robot. Comput.-Integr. Manuf. 2025, 91, 102844. https://doi.org/10.1016/j.rcim.2024.102844.

  • 9.

    Song, C.; Liu, Z.; Wang, X.; et al. Research on posture optimization and accuracy compensation technology in robotic side milling. Meas. Sci. Technol. 2024, 35, 125004. https://doi.org/10.1088/1361-6501/ad730a.

  • 10.

    Hou, M.; Shi, J.; Lin, X.; et al. Optimization of Robot Posture and Spindle Speed in Robotic Milling. Robot. Comput.-Integr. Manuf. 2025, 93, 102921. https://doi.org/10.1016/j.rcim.2024.102921.

  • 11.

    Xin, S.; Peng, F.; Tang, X.; et al. Research on the influence of robot structural mode on regenerative chatter in milling and analysis of stability boundary improvement domain. Int. J. Mach. Tools Manuf. 2022, 179, 103918. https://doi.org/10.1016/j.ijmachtools.2022.103918.

  • 12.

    Wu, K.; Lu, Y.; Huang, R.; et al. A Time-Series Data-Driven Method for Milling Force Prediction of Robotic Machining. IEEE Trans. Instrum. Meas. 2024, 73, 3515212. https://doi.org/10.1109/TIM.2024.3376018.

  • 13.

    Yang, B.; Guo, K.; Zhou, Q.; et al. Early chatter detection in robotic milling under variable robot postures and cutting parameters. Mech. Syst. Signal Process 2023, 186, 109860. https://doi.org/10.1016/j.ymssp.2022.109860.

  • 14.

    Guo, K.; Qian, N.; Sun, J.; et al. Chatter suppression in robotic milling using active contact force actuator. J. Manuf. Process 2025, 133, 118–129. https://doi.org/10.1016/j.jmapro.2024.11.050.

  • 15.

    Klimchik, A.; Bondarenko, D.; Pashkevich, A.; et al. Compliance Error Compensation in Robotic-Based Milling. In Informatics in Control, Automation and Robotics; Springer International Publishing: Cham, Switzerland, 2014. https://doi.org/10.1007/978-3-319-03500-0_13.

  • 16.

    Sahu, G.; Otto, A.; Ihlenfeldt, S. Improving Robotic Milling Performance through Active Damping of Low-Frequency Structural Modes. J. Manuf. Mater. Process 2024, 8, 160. https://doi.org/10.3390/jmmp8040160.

  • 17.

    Wang, W.; Guo, Q.; Yang, Z.; et al. A state-of-the-art review on robotic milling of complex parts with high efficiency and precision. Robot. Comput. Integr. Manuf. 2023, 79, 102436. https://doi.org/10.1016/j.rcim.2022.102436.

  • 18.

    Chen, Q.; Zhang, C.; Hu, T.; et al. Posture Optimization in Robotic Machining Based on Comprehensive Deformation Index Considering Spindle Weight and Cutting Force. Robot. Comput.-Integr. Manuf. 2021, 74, 102290. https://doi.org/10.1016/j.rcim.2021.102290.

  • 19.

    Schneider, U.; Diaz Posada, J.R.; Verl, A. Automatic Pose Optimization for Robotic Processes. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 2054–2059. https://doi.org/10.1109/ICRA.2015.7139468.

  • 20.

    Souflas, T.; Gerontas, C.; Bikas, H.; et al. On the Optimization of Robot Machining: A Simulation-Based Process Planning Approach. Machines 2024, 12, 521. https://doi.org/10.3390/machines12080521.

  • 21.

    Liao, Z.; Wang, Q.; Xie, H.; et al. Optimization of Robot Posture and Workpiece Setup in Robotic Milling with Stiffness Threshold. IEEE/ASME Trans. Mechatron. 2022, 27, 582–593. https://doi.org/10.1109/TMECH.2021.3068599.

  • 22.

    Kiefer, D.; Luo, X.; Reimer, A.; et al. Robotic Machining: Status, Challenges and Future Trends. In Proceedings of the 28th IEEE International Conference on Automation and Computing (ICAC), Birmingham, UK, 30 August–1 September 2023.

  • 23.

    Ji, W.; Wang, L. Industrial Robotic Machining: A Review. Int. J. Adv. Manuf. Technol. 2019, 103, 1239–1255. https://doi.org/10.1007/s00170-019-03403-z.

  • 24.

    Verl, A.; Valente, A.; Melkote, S.; et al. Robots in machining. CIRP Ann. 2019, 68, 799–822. https://doi.org/10.1016/j.cirp.2019.05.009

  • 25.

    Faisal, A.; Yigitcanlar, T.; Kamruzzaman, M.; et al. Mapping two decades of autonomous vehicle research: A systematic Scientometric analysis. J. Urban Technol. 2021, 28, 45–74. https://doi.org/10.1080/10630732.2020.1780868.

  • 26.

    Sheikhnejad, Y.; Yigitcanlar, T. Scientific landscape of sustainable urban and rural areas research: A systematic scientometric analysis. Sustainability 2020, 12, 1293. https://doi.org/10.3390/su12041293.

  • 27.

    Wei, Y.; Haitao, L.; Guangxi, L.; et al. Approach for Identifying Cartesian Stiffness of a 5-Degree-of-Freedom Hybrid Robot for Machining. J. Mech. Robot. 2024, 16, 031009.

  • 28.

    Denkena, B.; Lepper, T. Enabling an industrial robot for metal cutting operations. Procedia CIRP 2015, 35, 79–84. https://doi.org/10.1016/j.procir.2015.08.012.

  • 29.

    Takaki, T.; Kanekiyo, M.; Endo, G.; et al. Damping Characteristics in Adaptation of Plastics for Robot Structures. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023.

  • 30.

    Gao, K.; Zhou, X.; Wang, R.; et al. Robotic milling stability optimization based on robot functional redundancy. Ind. Robot. 2023, 50, 1036–1047. https://doi.org/10.1108/IR-02-2023-0033.

  • 31.

    Chen, Q.; Yin, S.; Zhang, J.; et al. Pose Optimization of Industrial Robots Based on Stiffness for Milling Tasks. Robot 2021, 43, 90–100. https://doi.org/10.13973/j.cnki.robot.200042.

  • 32.

    Cordes, M.; Hintze, W.; Altintas, Y. Chatter stability in robotic milling. Robot. Comput. Integr. Manuf. 2019, 55, 11–18. https://doi.org/10.1016/j.rcim.2018.07.004.

  • 33.

    Honarpardaz, M.; Trangärd, A.; Derkx, J.; et al. Benchmark of advanced structural materials for lightweight design of industrial robots. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015.

  • 34.

    Liu, Y.; Chen, X.; Wu, L.; et al. Global optimization of functional redundancy in a 6R robot for smoothing five-axis milling operations. Eng. Optim. 2023, 56, 138–154. https://doi.org/10.1080/0305215X.2023.2178930.

  • 35.

    Lehmann, C.; Olofsson, B.; Nilsson, K.; et al. Robot Joint Modelling and Parameter Identification Using the Clamping Method. IFAC Proc. 2013, 46, 813–818. https://doi.org/10.3182/20130619-3-RU-3018.00530.

  • 36.

    Klimchik, A.; Pashkevich, A.; Chablat, D. Fundamentals of manipulator stiffness modelling using matrix structural analysis. Mech. Mach. Theory 2018, 133, 365–394. https://doi.org/10.1016/j.mechmachtheory.2018.01.013.

  • 37.

    Klimchik, A.; Ambiehl, A.; Garnier, S.; et al. Efficiency evaluation of robots in machining applications using industrial performance measure. Robot. Comput.-Integr. Manuf. 2017, 48, 12–29. https://doi.org/10.1016/j.rcim.2017.02.001.

  • 38.

    Gonul, B.; Sapmaz, O.F.; Tunc, L.T. Improved stable conditions in robotic milling by kinematic redundancy. Procedia CIRP 2019, 82, 485–490. https://doi.org/10.1016/j.procir.2019.04.084.

  • 39.

    Li, X.Y.; Lu, L.; Fan, C.; et al. Ball-End Cutting Tool Posture Optimization for Robot Surface Milling Considering Different Joint Load. Appl. Sci. 2023, 13, 5328. https://doi.org/10.3390/app13095328.

  • 40.

    Khan, H.; Kim, H.H.; Abbasi, S.J.; et al. Real-Time Inverse Kinematics Using Dual Particle Swarm Optimization (DPSO) of 6-DOF Robot for Nuclear Plant Dismantling. IFAC-Pap. 2020, 53, 9885–9890. https://doi.org/10.1016/j.ifacol.2020.12.2632.

  • 41.

    Liao, Z.-Y.; Li, J.-R.; Xie, H.-L.; et al. Region-based toolpath generation for robotic milling of freeform surfaces with stiffness optimization. Robot. Comput.-Integr. Manuf. 2020, 64, 101953. https://doi.org/10.1016/j.rcim.2020.101953.

  • 42.

    Nigus, H. Semi-Analytical Approach for Stiffness Estimation of 3-DOF PKM. Mod. Mech. Eng. 2014, 4, 108–118. https://doi.org/10.4236/mme.2014.42010.

  • 43.

    Zhang, T.; Peng, F.Y.; Yan, R.; et al. Quantification of uncertainty in robot pose errors and calibration of reliable compensation values. Robot. Comput.-Integr. Manuf. 2024, 89, 20. https://doi.org/10.1016/j.rcim.2024.101906.

  • 44.

    Abrajan-Guerrero, R.; Kelly, S.D. Elastic Compliance Versus Joint Actuation in an Articulated Swimming Robot. IFAC-Pap. 2018, 51, 167–173. https://doi.org/10.1016/j.ifacol.2018.07.028.

  • 45.

    Qian, Y.; Han, S.; Aguirre-Ollinger, G.; et al. Design, modelling, and control of a reconfigurable rotary series elastic actuator with nonlinear stiffness for assistive robots. Mechatronics 2022, 86, 102872. https://doi.org/10.1016/j.mechatronics.2022.102872.

  • 46.

    Guo, Y.; Dong, H.; Ke, Y. Stiffness-oriented posture optimization in robotic machining applications. Robot. Comput.-Integr. Manuf. 2015, 35, 69–76. https://doi.org/10.1016/j.rcim.2015.02.006.

  • 47.

    Kito, H.; Yamada, Y.; Liu, J.; et al. Updating potential runaway motion volume in task space and introducing minimum volume enclosing ellipsoid. In Proceedings of the 2021 International Conference on Computer, Control and Robotics (ICCCR), Shanghai, China, 8–10 January 2021. https://doi.org/10.1109/ICCCR49711.2021.9349379.

  • 48.

    Deng, K.; Gao, D.; Zhao, C.; et al. Prediction of in-process frequency response function and chatter stability considering pose and feedrate in robotic milling. Robot. Comput.-Integr. Manuf. 2023, 82, 102548. https://doi.org/10.1016/j.rcim.2023.102548.

  • 49.

    Liu, H.; Lei, Y.; Yang, X.; et al. Deflection estimation of industrial robots with flexible joints. Fundam. Res. 2022, 2, 447–455. https://doi.org/10.1016/j.fmre.2022.07.009.

  • 50.

    Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

  • 51.

    Lei, Y.; Hou, T.; Ding, Y. Prediction of the posture-dependent tool tip dynamics in robotic milling based on multi-task Gaussian process regressions. Robot. Comput.-Integr. Manuf. 2023, 81, 102508. https://doi.org/10.1016/j.rcim.2022.102508.

  • 52.

    Zhang, J.; Yang, J.; Yue, Y.; et al. Optimization of comprehensive stiffness performance index for industrial robot in milling process. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), Brussels, Belgium, 22–25 July 2019. https://doi.org/10.1109/ICMAE.2019.8881018.

  • 53.

    Tian, Y.; Wang, B.; Liu, J.; et al. Research on layout and operational pose optimization of robot grinding system based on optimal stiffness performance. J. Adv. Mech. Des. Syst. Manuf. 2017, 11, JAMDSM0022. https://doi.org/10.1299/jamdsm.2017jamdsm0022.

  • 54.

    Ye, C.; Yang, J.; Zhao, H.; et al. Task-dependent work-piece placement optimisation for minimising contour errors induced by low posture-dependent stiffness in robotic milling. Intern. J. Mech. Sci. 2021, 205, 106601. https://doi.org/10.1016/j.ijmecsci.2021.106601.

  • 55.

    Qu, X.; Wan, M.; Shen, C.-J.; et al. Profile-error-oriented optimisation of the feed direction and posture of the end-effector in robotic free-form milling. Robot. Comput.-Integr. Manuf. 2023, 83, 102580. https://doi.org/10.1016/j.rcim.2023.102580.

  • 56.

    Lin, J.; Ye, C.; Yang, J.; et al. Contour-error-based optimisation of the end-effector pose of a 6-DOF serial robot in milling operations. Robot. Comput.-Integr. Manuf. 2022, 73, 102257. https://doi.org/10.1016/j.rcim.2021.102257.

  • 57.

    Peng, J.; Ding, Y.; Zhang, G.; et al. Smoothness-oriented path optimisation for robotic milling processes. Sci. China Technol. Sci. 2020, 63, 1751–1763. https://doi.org/10.1007/s11431-019-1529-x.

  • 58.

    Chen, Y.-X.; Ding, Y. Posture optimisation in robotic flat-end milling based on sequential quadratic programming. J. Manuf. Sci. Eng. 2023, 145, 061001. https://doi.org/10.1115/1.4056707.

  • 59.

    Liao, Z.; Qin, Z.; Xie, H.; et al. Constant load toolpath planning and stiffness matching optimization in robotic surface milling. Int. J. Adv. Manuf. Technol. 2024, 130, 353–368. https://doi.org/10.1007/s00170-023-12639-9.

  • 60.

    Chen, Y.; Lu, Y.; Ding, Y. Toolpath generation for robotic flank milling via smoothness and stiffness optimization. Robot. Comput.-Integr. Manuf. 2024, 85, 102640. https://doi.org/10.1016/j.rcim.2023.102640.

  • 61.

    Sousa, V.; Silva, F.J.G.; Fecheira, J.S.; et al. Accessing the cutting forces in machining processes: An overview. Procedia Manuf. 2020, 51, 787–794. https://doi.org/10.1016/j.promfg.2020.10.110.

  • 62.

    Cao, H.; Zhang, X.; Chen, X. The concept and progress of intelligent spindles: A review. Int. J. Mach. Tools Manuf. 2017, 112, 21–52. https://doi.org/10.1016/j.ijmachtools.2016.10.005.

  • 63.

    Majumder, B.D.; Roy, J.K.; Padhee, S. Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: A review. IEEE Sens. J. 2019, 19, 1204–1214. https://doi.org/10.1109/JSEN.2018.2882239.

  • 64.

    Ozsoy, M.; Sims, N.D.; Ozturk, E. Robotically assisted active vibration control in milling: A feasibility study. Mech. Syst. Signal Process 2022, 177, 109152. https://doi.org/10.1016/j.ymssp.2022.109152.

  • 65.

    Colgate, J.E.; Wannasuphoprasit, W.; Peshkin, M.A. Cobots: Robots for collaboration with human operators. In Proceedings of the ASME 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, USA, 17–22 November 1996. https://doi.org/10.1115/IMECE1996-0367.

  • 66.

    Muñoz-Benavent, P.; Solanes, J.E.; Gracia, L.; et al. Robust auto tool change for industrial robots using visual servoing. Int. J. Syst. Sci. 2019, 50, 432–449. https://doi.org/10.1080/00207721.2018.1562129.

  • 67.

    Nam, D.V.; Danh, P.T.; Park, C.H.; et al. Fusion consistency for industrial robot navigation: An integrated SLAM framework with multiple 2D LiDAR-visual-inertial sensors. Comput. Electr. Eng. 2024, 120, 109607. https://doi.org/10.1016/j.compeleceng.2024.109607.

  • 68.

    Li, G.; Gao, D.; Lu, Y.; et al. Adaptive Kalman filtering and PSO-GA-BP algorithm for robot error compensation. China Mech. Eng. 2023, 34, 2456–2465. https://doi.org/10.3969/j.issn.1004-132X.2023.20.008.

  • 69.

    Iglesias, I.; Sánchez, A.; Silva, F.J.G. Robotic path compensation training method for optimizing face milling operations based on non-contact CMM techniques. Robot. Comput.-Integr. Manuf. 2024, 85, 102623. https://doi.org/10.1016/j.rcim.2023.102623.

  • 70.

    Zhang, T.; Sun, H.; Peng, F.; et al. An online prediction and compensation method for robot position errors embedded with error-motion correlation. Measurement 2024, 234, 114866. https://doi.org/10.1016/j.measurement.2024.114866.

  • 71.

    Xu, L.K.; Zhang, D.S.; Xu, J.T.; et al. A stiffness matching-based deformation errors control strategy for dual-robot collaborative machining of thin-walled parts. Robot. Comput.-Integr. Manuf. 2024, 88, 102726. https://doi.org/10.1016/j.rcim.2024.102726.

  • 72.

    Yue, S.; Li, Y.; Liang, C.; et al. A reduced-parameter virtual joint model for stiffness prediction in industrial robots. Robot. Comput.-Integr. Manuf. 2022, 73, 102230. https://doi.org/10.1016/j.rcim.2021.102230.

  • 73.

    Wu, J.; Wang, D.; He, Y. Data-driven stiffness modelling of industrial robots using hybrid MLP and VJM approaches. J. Manuf. Process 2022, 78, 71–81. https://doi.org/10.1016/j.jmapro.2022.04.003.

  • 74.

    Xue, Z.; Ye, H.; Chen, X.; et al. Human–robot collaborative assembly based on eye–hand coordination and finite state machine in a virtual environment. Appl. Sci. 2023, 13, 5754. https://doi.org/10.3390/app11125754.

  • 75.

    Zhao, X.W.; Tao, B.; Han, S.B.; et al. Accuracy analysis in mobile robot machining of large-scale workpieces. Robot. Comput.-Integr. Manuf. 2021, 71, 102153. https://doi.org/10.1016/j.rcim.2021.102153.

Share this article:
How to Cite
Sebbe, N.; Lafuente, J.-L.; Aibar, C.; Iglesias, I. Posture Optimization Techniques for Enhanced Robotic Machining Performance: A Review. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100013.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.