2512002571
  • Open Access
  • Review

Exploring Post-Processing Operations of Ti Alloys Using Hybrid Manufacturing Systems

  • Naiara P. V. Sebbe 1, 2, *,   
  • Francisco J. G. Silva 1,   
  • Arnaldo Pinto 1,   
  • Iván Iglesias 3,   
  • Andresa Baptista 1,   
  • Isabel M. Pinto 1

Received: 21 Sep 2025 | Revised: 29 Oct 2025 | Accepted: 08 Jan 2026 | Published: 06 Feb 2026

Abstract

This article provides an insightful overview of titanium alloys, focusing on their production, key applications, and the challenges in machining and processing. It delves into the extraction methods like the Kroll and Hunter’s processes, the formation of alloys with elements like aluminum and vanadium, and their use in aerospace, biomedical, and automotive industries due to their excellent strength-to-weight ratio. This issue also addresses the difficulties in machining titanium, efforts in enhancing its properties, and the role of advanced manufacturing techniques, especially Hybrid Manufacturing, in improving efficiency and reducing costs. This study intended to perform a comprehensive literature analysis on titanium and its alloys, encompassing extraction, manufacturing, and post-processing, while examining contemporary advancements, employed approaches, and resultant findings in this domain. This work seeks to provide organized information on research pertaining to titanium, specifically the Ti6Al4V alloy, encompassing its extraction, manufacturing processes, post-processing, applications, and identified challenges, thereby facilitating the rapid knowledge acquisition of emerging researchers in this domain. Additionally, a SWOT analysis is included as a method for scenario analysis.

References 

  • 1.

    Hourmand, M.; Sarhan, A.A.D.; Sayuti, M.; et al. A Comprehensive Review on Machining of Titanium Alloys. Arab. J. Sci. Eng. 2021, 46, 7087–7123. https://doi.org/10.1007/s13369-021-05420-1.

  • 2.

    Rafal, R.; Pawel, L.; Krzysztof, K.; et al. Chatter identification methods on the basis of time series measured during titanium superalloy milling. Int. J. Mech. Sci. 2015, 99, 196–207. https://doi.org/10.1016/j.ijmecsci.2015.05.013.

  • 3.

    Julien, R.; Velay, V.; Vidal, V.; et al. Characterization and modeling of forged Ti-6Al-4V Titanium alloy with microstructural considerations during quenching process. Int. J. Mech. Sci. 2018, 142–143, 456–467. https://doi.org/10.1016/j.ijmecsci.2018.05.023.

  • 4.

    Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2023, 17, 114. https://doi.org/10.3390/ma17010114.

  • 5.

    Li, A.; Wang, Q.; Chen, R.; et al. Application of alloying for enhancing the corrosion resistance of titanium alloys: A review. Mater. Today Commun. 2025, 42, 111111. https://doi.org/10.1016/j.mtcomm.2024.111111.

  • 6.

    Pham, Q.T.; Lee, M.G.; Kim, Y.S. Characterization of the isotropic-distortional hardening model and its application to commercially pure titanium sheets. Int. J. Mech. Sci. 2019, 160, 90–102. https://doi.org/10.1016/j.ijmecsci.2019.06.023.

  • 7.

    Najafizadeh, M.; Yazdi, S.; Bozorg, M.; et al. Classification and applications of titanium and its alloys: A review. J. Alloys Compd. Commun. 2024, 3, 100019. https://doi.org/10.1016/j.jacomc.2024.100019.

  • 8.

    Mitchell, A. Melting casting and forging problems in titanium alloys. Mater. Sci. Eng. A 1998, 243, 257–262. https://doi.org/10.1016/S0921-5093(97)00810-1.

  • 9.

    Liu, Z.; Welsch, G. Literature Survey on Diffusivities of Oxygen, Aluminum, Vanadium in Alpha Titanium, Beta Titanium, in Rutile. Metall. Trans. A 1988, 19, 1121–1125. https://doi.org/10.1007/BF02628396.

  • 10.

    Collins, P.C.; Banerjee, R.; Banerjee, S.; et al. Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys. Mater. Sci. Eng. A 2003, 352, 118–128. https://doi.org/10.1016/S0921-5093(02)00909-7.

  • 11.

    Abdalla, A.O.; Amrin, A.; Muhammad, S.; et al. Iron as a Promising Alloying Element for the Cost Reduction of Titanium Alloys: A Review. Appl. Mech. Mater. 2017, 864, 147–153. https://doi.org/10.4028/www.scientific.net/AMM.864.147.

  • 12.

    Liu, Z.; He, B.; Lyu, T.; et al. A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V. JOM 2021, 73, 1804–1818. https://doi.org/10.1007/s11837-021-04670-6.

  • 13.

    Cecchel, S.; Montesano, L.; Cornacchia, G. Wear and Corrosion Characterization of a Ti-6Al-4V Component for Automotive Applications: Forging versus Selective Laser Melting Technologies. Adv. Eng. Mater. 2022, 24, 2200082. https://doi.org/10.1002/adem.202200082.

  • 14.

    Haydar, H.J.; Al-Deen, J.; AbidAli, A.K.; et al. Improved performance of Ti-6-Al-4V alloy in Biomedical applications–Review. J. Phys. Conf. Ser. 2021, 1973, 012146. https://doi.org/10.1088/1742-6596/1973/1/012146.

  • 15.

    Jones, R.; Raman, R.K.S.; Iliopoulos, A.P.; et al. Additively manufactured Ti-6Al-4V replacement parts for military aircraft. Int. J. Fatigue 2019, 124, 227–235. https://doi.org/10.1016/j.ijfatigue.2019.02.041.

  • 16.

    Pushp, P.; Dasharath, S.M.; Arati, C. Classification and applications of titanium and its alloys. Mater. Today Proc. 2022, 54, 537–542. https://doi.org/10.1016/j.matpr.2022.01.008.

  • 17.

    García-Hernández, C.; García-Cabezón, C.; González-Diez, F.; et al. Effect of processing on microstructure, mechanical properties, corrosion and biocompatibility of additive manufacturing Ti-6Al-4V orthopaedic implants. Sci. Rep. 2025, 15, 14087. https://doi.org/10.1038/s41598-025-98349-6.

  • 18.

    Sebbe, N.P.V.; Fernandes, F.; Sousa, V.F.C.; et al. Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review. Metals 2022, 12, 1874. https://doi.org/10.3390/met12111874.

  • 19.

    Jin, B.; Wang, Q.; Zhao, L.; et al. A Review of Additive Manufacturing Techniques and Post-Processing for High-Temperature Titanium Alloys. Metals 2023, 13, 1327. https://doi.org/10.3390/met13081327.

  • 20.

    Bodunrin, M.O.; Chown, L.H.; Omotoyinbo, J.A.; et al. Development of low-cost titanium alloys: A chronicle of challenges and opportunities. Mater. Today Proc. 2021, 38, 564–569. https://doi.org/10.1016/j.matpr.2020.02.978.

  • 21.

    El Khalloufi, M.; Drevelle, O.; Soucy, G. Titanium: An Overview of Resources and Production Methods. Minerals 2021, 11, 1425. https://doi.org/10.3390/min11121425.

  • 22.

    Fray, D.J. Novel methods for the production of titanium. Int. Mater. Rev. 2008, 53, 317–325. https://doi.org/10.1179/174328008X324594.

  • 23.

    Earlam, M.R. The Kroll process and production of titanium sponge. In Extractive Metallurgy of Titanium; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–112. https://doi.org/10.1016/B978-0-12-817200-1.00006-5.

  • 24.

    Ogunmefun, O.A.; Bayode, B.L.; Jamiru, T.; et al. A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques. J. Alloys Compd. 2023, 960, 170407. https://doi.org/10.1016/j.jallcom.2023.170407.

  • 25.

    Callegari, B.; Lima, T.N.; Coelho, R.S. The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review. Metals 2023, 13, 1174. https://doi.org/10.3390/met13071174.

  • 26.

    Pang, J.; Blackwood, D.J. Corrosion of titanium alloys in high temperature near anaerobic seawater. Corros. Sci. 2016, 105, 17–24. https://doi.org/10.1016/j.corsci.2015.12.011.

  • 27.

    Tardelli, J.D.C.; Bolfarini, C.; Cândido dos Reis, A. Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review. J. Trace Elem. Med. Biol. 2020, 62, 126618. https://doi.org/10.1016/j.jtemb.2020.126618.

  • 28.

    Datta, S.; Mahfouf, M.; Zhang, Q.; et al. Imprecise knowledge based design and development of titanium alloys for prosthetic applications. J. Mech. Behav. Biomed. Mater. 2016, 53, 350–365. https://doi.org/10.1016/j.jmbbm.2015.08.039.

  • 29.

    Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001.

  • 30.

    Conforto, E.; Aronsson, B.-O.; Salito, A.; et al. Rough surfaces of titanium and titanium alloys for implants and prostheses. Mater. Sci. Eng. C 2004, 24, 611–618. https://doi.org/10.1016/j.msec.2004.08.004.

  • 31.

    Srivastava, M.; Jayakumar, V.; Udayan, Y.; et al. Additive manufacturing of Titanium alloy for aerospace applications: Insights into the process, microstructure, mechanical properties. Appl. Mater. Today 2024, 41, 102481. https://doi.org/10.1016/j.apmt.2024.102481.

  • 32.

    Bandyopadhyay, A.; Traxel, K.D.; Lang, M.; et al. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater. Today 2022, 52, 207–224. https://doi.org/10.1016/j.mattod.2021.11.026.

  • 33.

    Neto, D.M.; Borges, M.F.; Antunes, F.V.; et al. Mechanisms of fatigue crack growth in Ti-6Al-4V alloy subjected to single overloads. Theor. Appl. Fract. Mech. 2021, 114, 103024. https://doi.org/10.1016/j.tafmec.2021.103024.

  • 34.

    Williams, J.C.; Boyer, R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals 2020, 10, 705. https://doi.org/10.3390/met10060705.

  • 35.

    Gomez-Gallegos, A.; Mandal, P.; Gonzalez, D.; et al. Studies on Titanium Alloys for Aerospace Application. Defect. Diffus. Forum 2018, 385, 419–423. https://doi.org/10.4028/www.scientific.net/DDF.385.419.

  • 36.

    Boyer, R.R.; Briggs, R.D. The Use of β Titanium Alloys in the Aerospace Industry. J. Mater. Eng. Perform. 2005, 14, 681–685. https://doi.org/10.1361/105994905X75448.

  • 37.

    Gurrappa, I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 2003, 51, 131–139. https://doi.org/10.1016/j.matchar.2003.10.006.

  • 38.

    Oryshchenko, A.S.; Leonov, V.P.; Mikhailov, V.I.; et al. Titanium in Shipbuilding and Other Technical Applications. MATEC Web Conf. 2020, 321, 02001. https://doi.org/10.1051/matecconf/202032102001.

  • 39.

    Machado, A.R.; Wallbank, J. Machining of Titanium and its Alloys—A Review. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 1990, 204, 53–60. https://doi.org/10.1243/PIME_PROC_1990_204_047_02.

  • 40.

    Pramanik, A. Problems and solutions in machining of titanium alloys. Int. J. Adv. Manuf. Technol. 2014, 70, 919–928. https://doi.org/10.1007/s00170-013-5326-x.

  • 41.

    Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. https://doi.org/10.3390/met8070506.

  • 42.

    Lavrys, S.; Pohrelyuk, I.; Veselivska, H.; et al. Corrosion behavior of near-alpha titanium alloy fabricated by additive manufacturing. Mater. Corros. 2022, 73, 2063–2070. https://doi.org/10.1002/maco.202213105.

  • 43.

    Pesode, P.; Barve, S. A review—Metastable β titanium alloy for biomedical applications. J. Eng. Appl. Sci. 2023, 70, 25. https://doi.org/10.1186/s44147-023-00196-7.

  • 44.

    Ballor, J.; Li, T.; Prima, F.; et al. A review of the metastable omega phase in beta titanium alloys: The phase transformation mechanisms and its effect on mechanical properties. Int. Mater. Rev. 2023, 68, 26–45. https://doi.org/10.1080/09506608.2022.2036401.

  • 45.

    Le Coz, G.; Fischer, M.; Piquard, R.; et al. Micro Cutting of Ti-6Al-4V Parts Produced by SLM Process. Procedia CIRP 2017, 58, 228–232. https://doi.org/10.1016/j.procir.2017.03.326.

  • 46.

    Sharma, S.; Meena, A. Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V. J. Manuf. Process 2020, 50, 345–365. https://doi.org/10.1016/j.jmapro.2019.12.029.

  • 47.

    Wei, G.; Tan, M.; Attarilar, S.; et al. An overview of surface modification, A way toward fabrication of nascent biomedical Ti-6Al-4V alloys. J. Mater. Res. Technol. 2023, 24, 5896–5921. https://doi.org/10.1016/j.jmrt.2023.04.046.

  • 48.

    Ronoh, K.; Mwema, F.; Dabees, S.; et al. Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: A review. Biomed. Eng. Adv. 2022, 4, 100047. https://doi.org/10.1016/j.bea.2022.100047.

  • 49.

    Meier, B.; Warchomicka, F.; Petrusa, J.; et al. High Temperature Tensile Strength of TI-6AL-4V Processed by L-PBF—Influence of Microstructure and Heat Treatment. BHM Berg Hüttenmännische Monatshefte 2023, 168, 247–253. https://doi.org/10.1007/s00501-023-01346-3.

  • 50.

    Berladir, K.; Mitaľová, Z.; Ivanov, V. Titanium and Its Alloys. In Materials for the Automotive Industry; Springer Tracts in Mechanical Engineering; Springer: Berlin, Germany, 2026. https://doi.org/10.1007/978-3-032-05866-9_7.

  • 51.

    Sarraf, M.; Ghomi, E.R.; Alipour, S.; et al. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf. 2022, 5, 371–395. https://doi.org/10.1007/s42242-021-00170-3.

  • 52.

    Oke, S.R.; Ogunwande, G.S.; Onifade, M.; et al. An overview of conventional and non-conventional techniques for machining of titanium alloys. Manuf. Rev. 2020, 7, 34. https://doi.org/10.1051/mfreview/2020029.

  • 53.

    Muthuramalingam, T.; Akash, R.; Krishnan, S.; et al. Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process. J. Manuf. Process 2021, 62, 1–6. https://doi.org/10.1016/j.jmapro.2020.12.008.

  • 54.

    Airao, J.; Kishore, H.; Nirala, C.K. Comparative analysis of tool wear in micro-milling of wrought and selective laser melted Ti-6Al-4V. Wear 2023, 523, 204788. https://doi.org/10.1016/j.wear.2023.204788.

  • 55.

    Kaltenbrunner, T.; Krückl, H.P.; Schnalzger, G.; et al. Differences in evolution of temperature, plastic deformation and wear in milling tools when up-milling and down-milling Ti-6Al-4V. J. Manuf. Process 2022, 77, 75–86. https://doi.org/10.1016/j.jmapro.2022.03.010.

  • 56.

    Ranjan, A.; Jha, J.S.; Mishra, S.K. The Role of Microstructure Inhomogeneity in Ti-6Al-4V Forging on Fracture Toughness Behavior. J. Mater. Eng. Perform. 2022, 31, 7989–8003. https://doi.org/10.1007/s11665-022-06862-w.

  • 57.

    Slámečka, K.; Kashimbetova, A.; Pokluda, J.; et al. Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturing. Mater. Des. 2023, 225, 111453. https://doi.org/10.1016/j.matdes.2022.111453.

  • 58.

    Zhang, H.R.; Niu, H.Z.; Liu, S.; et al. Significantly enhanced tensile ductility and its origin of a <0001> micro-textured extrusion bar of a powder metallurgy near alpha titanium alloy. Scr. Mater. 2022, 213, 114633. https://doi.org/10.1016/j.scriptamat.2022.114633.

  • 59.

    Khan, H.A.; Asim, K.; Akram, F.; et al. Roll Bonding Processes: State-of-the-Art and Future Perspectives. Metals 2021, 11, 1344. https://doi.org/10.3390/met11091344.

  • 60.

    Luo, X.; Ren, X.; Jin, Q.; et al. Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti-6Al-4V alloy. J. Mater. Res. Technol. 2021, 13, 1586–1598. https://doi.org/10.1016/j.jmrt.2021.05.065.

  • 61.

    Tshephe, T.S.; Akinwamide, S.O.; Olevsky, E.; et al. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, prospects. Heliyon 2022, 8, e09041. https://doi.org/10.1016/j.heliyon.2022.e09041.

  • 62.

    Li, W.; Xu, Q.; Yin, Y.; et al. Research on pore closure behavior and microstructure evolution during hot isostatic pressing of Ti-6Al-4V alloy casting. J. Mater. Res. Technol. 2023, 24, 3628–3642. https://doi.org/10.1016/j.jmrt.2023.04.027.

  • 63.

    Ismail, R.; Bayuseno, A.P.; Fitriyana, D.F.; et al. Mechanical properties characterization of Ti-6Al-4V for artificial hip joint materials prepared by investment casting. IOP Conf. Ser. Earth Environ. Sci. 2022, 969, 012001. https://doi.org/10.1088/1755-1315/969/1/012001.

  • 64.

    Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; et al. Binder jet 3D printing—Process parameters, materials, properties, modeling, challenges. Prog. Mater. Sci. 2021, 119, 100707. https://doi.org/10.1016/j.pmatsci.2020.100707.

  • 65.

    Gouveia, R.M.; Silva, F.J.G.; Atzeni, E.; et al. Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts. Materials 2020, 13, 2248. https://doi.org/10.3390/ma13102248.

  • 66.

    Mobarak, M.H.; Islam, M.A.; Hossain, N.; et al. Recent advances of additive manufacturing in implant fabrication—A review. Appl. Surf. Sci. Adv. 2023, 18, 100462. https://doi.org/10.1016/j.apsadv.2023.100462.

  • 67.

    Silva, F.J.G.; Campilho, R.D.S.G.; Gouveia, R.M.; et al. A Novel Approach to Optimize the Design of Parts for Additive Manufacturing. Procedia Manuf. 2018, 17, 53–61. https://doi.org/10.1016/j.promfg.2018.10.012.

  • 68.

    Thomas, D.S.; Gilbert, S.W. Costs and Cost Effectiveness of Additive Manufacturing; U.S. Department of Commerce: Gaithersburg, MD, USA, 2014. https://doi.org/10.6028/NIST.SP.1176.

  • 69.

    Yusuf, S.M.; Cutler, S.; Gao, N. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals 2019, 9, 1286. https://doi.org/10.3390/met9121286.

  • 70.

    Gomes, J.F.B.; Wiltgen, F. Avanços na manufatura aditiva em metais: Técnicas, materiais e máquinas. Rev. Tecnol. 2020, 41. https://doi.org/10.5020/23180730.2020.9917.

  • 71.

    Ngo, T.D.; Kashani, A.; Imbalzano, G.; et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012.

  • 72.

    Zhao, N.; Parthasarathy, M.; Patil, S.; et al. Direct additive manufacturing of metal parts for automotive applications. J. Manuf. Syst. 2023, 68, 368–375. https://doi.org/10.1016/j.jmsy.2023.04.008.

  • 73.

    Srivastava, M.; Rathee, S.; Patel, V.; et al. A review of various materials for additive manufacturing: Recent trends and processing issues. J. Mater. Res. Technol. 2022, 21, 2612–2641. https://doi.org/10.1016/j.jmrt.2022.10.015.

  • 74.

    Tamayo, J.A.; Riascos, M.; Vargas, C.A.; et al. Additive manufacturing of Ti-6Al-4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021, 7, e06892. https://doi.org/10.1016/j.heliyon.2021.e06892.

  • 75.

    Umbrello, D.; Bordin, A.; Imbrogno, S.; et al. 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti-6Al-4V alloy. CIRP J. Manuf. Sci. Technol. 2017, 18, 92–100. https://doi.org/10.1016/j.cirpj.2016.10.004.

  • 76.

    Sonkamble, V.; Phafat, N. A current review on electron beam assisted additive manufacturing technology: Recent trends and advances in materials design. Discov. Mech. Eng. 2023, 2, 1. https://doi.org/10.1007/s44245-022-00008-x.

  • 77.

    Galib, G.; Silva, F.J.G.; Pedroso, A.F.V.; et al. A Comprehensive Review of Additive Manufacturing Technologies for Composite Materials. J. Mech. Eng. Manuf. 2025, 1, 2.

  • 78.

    Teixeira, Ó.; Silva, F.J.G.; Ferreira, L.P.; et al. A Review of Heat Treatments on Improving the Quality and Residual Stresses of the Ti–6Al–4V Parts Produced by Additive Manufacturing. Metals 2020, 10, 1006. https://doi.org/10.3390/met10081006.

  • 79.

    de Almeida, F.A.; Gomes, G.F.; De Paula, V.R.; et al. A Weighted Mean Square Error Approach to the Robust Optimization of the Surface Roughness in an AISI 12L14 Free-Machining Steel-Turning Process. Stroj. Vestn. J. Mech. Eng. 2018, 64, 147–156. https://doi.org/10.5545/sv-jme.2017.4901.

  • 80.

    Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. https://doi.org/10.1016/j.mattod.2017.07.001.

  • 81.

    Alipour, S.; Moridi, A.; Liou, F.; et al. The Trajectory of Additively Manufactured Titanium Alloys with Superior Mechanical Properties and Engineered Microstructures. Addit. Manuf. 2022, 60, 103245. https://doi.org/10.1016/j.addma.2022.103245.

  • 82.

    Rahman, M.; Wong, Y.S.; Zareena, A.R. Machinability of Titanium Alloys. JSME Int. J. Ser. C 2003, 46, 107–115. https://doi.org/10.1299/jsmec.46.107.

  • 83.

    Kikuchi, M.; Okuno, O. Machinability Evaluation of Titanium Alloys. Dent. Mater. J. 2004, 23, 37–45. https://doi.org/10.4012/dmj.23.37.

  • 84.

    Williams, R.; Bilton, M.; Harrison, N.; et al. The impact of oxidised powder particles on the microstructure and mechanical properties of Ti-6Al-4 V processed by laser powder bed fusion. Addit. Manuf. 2021, 46, 102181. https://doi.org/10.1016/j.addma.2021.102181.

  • 85.

    Sarma, J.; Kumar, R.; Sahoo, A.K.; et al. Enhancement of material properties of titanium alloys through heat treatment process: A brief review. Mater. Today Proc. 2020, 23, 561–564. https://doi.org/10.1016/j.matpr.2019.05.409.

  • 86.

    Diniță, A.; Neacșa, A.; Portoacă, A.I.; et al. Additive manufacturing post-processing treatments, a Review with Emphasis on Mechanical Characteristics. Materials 2023, 16, 4610. https://doi.org/10.3390/ma16134610.

  • 87.

    Klocke, F.; König, W.; Gerschwiler, K. Advanced Machining of Titanium- and Nickel-Based Alloys; Springer: Berlin, Germany, 1996; pp. 7–21. https://doi.org/10.1007/978-3-7091-2678-3_2.

  • 88.

    Bhandari, L.; Gaur, V. Different post-processing methods to improve fatigue properties of additively built Ti-6Al-4V alloy. Int. J. Fatigue 2023, 176, 107850. https://doi.org/10.1016/j.ijfatigue.2023.107850.

  • 89.

    Aziz, F.A. Manufacturing System; InTech: Rijeka, Croatia, 2012. https://doi.org/10.5772/2234.

  • 90.

    Jiménez, A.; Bidare, P.; Hassanin, H.; et al. Powder-based laser hybrid additive manufacturing of metals: A review. Int. J. Adv. Manuf. Technol. 2021, 114, 63–96. https://doi.org/10.1007/s00170-021-06855-4.

  • 91.

    Heigel, J.C.; Phan, T.Q.; Fox, J.C.; et al. Experimental Investigation of Residual Stress and its Impact on Machining in Hybrid Additive/Subtractive Manufacturing. Procedia Manuf. 2018, 26, 929–940. https://doi.org/10.1016/j.promfg.2018.07.120.

  • 92.

    Korkmaz, M.E.; Waqar, S.; Garcia-Collado, A.; et al. A technical overview of metallic parts in hybrid additive manufacturing industry. J. Mater. Res. Technol. 2022, 18, 384–395. https://doi.org/10.1016/j.jmrt.2022.02.085.

  • 93.

    Dezaki, M.L.; Serjouei, A.; Zolfagharian, A.; et al. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process. Adv. Powder Mater. 2022, 1, 100054. https://doi.org/10.1016/j.apmate.2022.100054.

  • 94.

    Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011, 51, 250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003.

  • 95.

    Yadav, P.; Saxena, K.K. Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: An overview. Mater. Today Proc. 2020, 26, 2546–2557. https://doi.org/10.1016/j.matpr.2020.02.541.

  • 96.

    Carrozza, A.; Aversa, A.; Fino, P.; et al. Towards customized heat treatments and mechanical properties in the LPBF-processed Ti6Al2Sn4Zr6Mo alloy. Mater. Des. 2022, 215, 110512. https://doi.org/10.1016/j.matdes.2022.110512.

  • 97.

    Lee, Y.; Feldhausen, T.; Fancher, C.M.; et al. Prediction of residual strain/stress validated with neutron diffraction method for wire-feed hybrid additive/subtractive manufacturing. Addit. Manuf. 2024, 79, 103920. https://doi.org/10.1016/j.addma.2023.103920.

Share this article:
How to Cite
Sebbe, N. P. V.; Silva, F. J. G.; Pinto, A.; Iglesias, I.; Baptista, A.; Pinto, I. M. Exploring Post-Processing Operations of Ti Alloys Using Hybrid Manufacturing Systems. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.