2601002827
  • Open Access
  • Review

Recent Advances and Future Trends in Extending the Service Life of Injection Moulding Tools: A Comprehensive Review

  • André F. V. Pedroso 1, 2, *,   
  • Luís M. Durão 1, 3,   
  • Rui P. Martinho 1,   
  • Marlene Brito 1,   
  • Ricardo J. D. Alexandre 4,   
  • Angelos P. Markopoulos 5

Received: 18 Dec 2025 | Revised: 08 Jan 2026 | Accepted: 13 Jan 2026 | Published: 11 Feb 2026

Abstract

Injection Moulding (IM) tools play a decisive role in high-volume manufacturing, particularly in the production of polymer components where dimensional accuracy, surface integrity, and process stability are paramount. The increasing adoption of fibre-reinforced polymers (FRPs), especially within the automotive and aerospace sectors, has substantially intensified the mechanical, thermal, and tribological demands imposed on tooling systems, thereby accelerating Tool Wear (TW) and surface degradation. Comparable challenges are encountered in related forming processes, including sheet-metal stamping and pressing, where abrasive contact, cyclic loading, and elevated temperatures contributepractical to premature tool failure. Extending tool service life has consequently emerged as a strategic priority for improving cost efficiency, reducing unplanned downtime, and ensuring consistent product quality across extended production runs. Against this background, the present review critically evaluates recent technological advances aimed at enhancing the durability and operational longevity of injection moulding tools, with a particular focus on solutions that have demonstrated practical relevance under industrial conditions. Advanced surface-engineering approaches, including electrodeposition, nitriding, and physical and chemical vapour deposition (PVD and CVD) coatings, are examined in terms of their effectiveness in mitigating wear, corrosion, and thermal-fatigue damage. Developments in tool material selection, encompassing high-performance alloys and engineered coating systems, are assessed with respect to friction reduction and thermal management, providing actionable insights for tool designers and manufacturing engineers. In addition, the integration of additive manufacturing for tool repair and refurbishment is discussed as a pragmatic and increasingly viable route to extending Tool Lifespan (TL), supporting more sustainable and cost-effective tooling strategies in modern manufacturing environments.

References 

  • 1.

    Kalami, H.; Urbanic, R.J. Design and fabrication of a low-volume, high-temperature injection mould leveraging a ‘rapid tooling’ approach. Int. J. Adv. Manuf. Technol. 2019, 105, 3797–3813. https://doi.org/10.1007/s00170-019-03799-8.

  • 2.

    Pedroso, A.F.V.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. A Brief Review on Hardened Tool Steel for Injection Moulds and Milling Operations. In Advances in Design, Simulation and Manufacturing VIII; Springer Nature: Cham, Switzerland, 2025; pp. 68–76.

  • 3.

    Narowski, P.; Wilczyński, K. A Global Approach to Modeling Injection Molding. Polymers 2024, 16, 147.

  • 4.

    Broqvist, N.; Hogmark, S.; Medvedeva, A.; et al. On wear resistance of tool steel. J. Manuf. Process. 2012, 14, 195–198. https://doi.org/10.1016/j.jmapro.2012.03.002.

  • 5.

    Coranic, T.; Gaspar, S.; Pasko, J. Utilization of Optimization of Internal Topology in Manufacturing of Injection Moulds by the DMLS Technology. Appl. Sci. 2021, 11, 262.

  • 6.

    Czepiel, M.; Bańkosz, M.; Sobczak-Kupiec, A. Advanced Injection Molding Methods: Review. Materials 2023, 16, 5802.

  • 7.

    Li, Y.; Xiao, Y.; Yu, L.; et al. A review on the tooling technologies for composites manufacturing of aerospace structures: Materials, structures and processes. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106762. https://doi.org/10.1016/j.compositesa.2021.106762.

  • 8.

    Galib, G.; Silva, F.J.G.; Pedroso, A.F.V.; et al. A Comprehensive Review of Additive Manufacturing Technologies for Composite Materials. J. Mech. Eng. Manuf. 2025, 1, 2.

  • 9.

    Smolik, J.; Gulde, M.; Walkowicz, J.; et al. Influence of the structure of the composite: ‘nitrided layer/PVD coating’ on the durability of forging dies made of steel DIN-1.2367. Surf. Coat. Technol. 2004, 180181, 506–511. https://doi.org/10.1016/j.surfcoat.2003.10.152.

  • 10.

    Jhavar, S.; Paul, C.P.; Jain, N.K. Causes of failure and repairing options for dies and molds: A review. Eng. Fail. Anal. 2013, 34, 519–535. https://doi.org/10.1016/j.engfailanal.2013.09.006.

  • 11.

    Podgornik, B.; Sedlaček, M.; Žužek, B.; et al. Properties of Tool Steels and Their Importance When Used in a Coated System. Coatings 2020, 10, 265.

  • 12.

    Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721.

  • 13.

    Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; et al. Advances in lightweight composite structures and manufacturing technologies: A comprehensive review. Heliyon 2024, 10, e39661. https://doi.org/10.1016/j.heliyon.2024.e39661.

  • 14.

    Liao, Z.; la Monaca, A.; Murray, J.; et al. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2021, 162, 103687. https://doi.org/10.1016/j.ijmachtools.2020.103687.

  • 15.

    Gouveia, J.R.; Pinto, S.M.; Campos, S.; et al. Life Cycle Assessment and Cost Analysis of Additive Manufacturing Repair Processes in the Mold Industry. Sustainability 2022, 14, 2105.

  • 16.

    Akcay, A.; Topan, E.; van Houtum, G.-J. Machine tools with hidden defects: Optimal usage for maximum lifetime value. IISE Trans. 2021, 53, 74–87. https://doi.org/10.1080/24725854.2020.1739786.

  • 17.

    Benhanifia, A.; Cheikh, Z.B.; Oliveira, P.M.; et al. Systematic review of predictive maintenance practices in the manufacturing sector. Intell. Syst. Appl. 2025, 26, 200501. https://doi.org/10.1016/j.iswa.2025.200501.

  • 18.

    Allwood, J.M.; Music, O.; Loukaides, E.G.; et al. Cut the scrap: Making more use of less metal. CIRP Ann. 2025, 74, 895–919. https://doi.org/10.1016/j.cirp.2025.04.013.

  • 19.

    Ojeda, J.C.O.; de Moraes, J.G.B.; Filho, C.V.d.S.; et al. Application of a Predictive Model to Reduce Unplanned Downtime in Automotive Industry Production Processes: A Sustainability Perspective. Sustainability 2025, 17, 3926.

  • 20.

    Pedroso, A.F.V.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Recent progress in milling operations for injection mould hardened tool steels: A concise review. Int. J. Adv. Manuf. Technol. 2025. https://doi.org/10.1007/s00170-025-16951-4.

  • 21.

    Nogueira, F.R.; Pedroso, A.F.V.; Sousa, V.F.C.; et al. A Brief Review of Injection-Mould Materials Hybrid Manufacturing Processes. In Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems; Silva, F.J.G., Pereira, A.B., Campilho, R.D.S.G., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 796–806.

  • 22.

    Veiga, F.; Suarez, A.; Aldalur, E.; et al. Wire arc additive manufacturing of invar parts: Bead geometry and melt pool monitoring. Measurement 2022, 189, 110452. https://doi.org/10.1016/j.measurement.2021.110452.

  • 23.

    Pedroso, A.F.V.; Sebbe, N.P.V.; Silva, F.J.G.; et al. A Concise Review on Materials for Injection Moulds and Their Conventional and Non-Conventional Machining Processes. Machines 2024, 12, 255.

  • 24.

    Nogueira, F.R.; Pedroso, A.F.V.; Silva, F.J.G.; et al. A Comparative Study on the Wear Mechanisms of Uncoated and TiAlTaN-Coated Tools Used in Machining AMPCO® Alloy. Coatings 2024, 14, 4.

  • 25.

    Chudina, O.V.; Brezhnev, A.A. Surface Hardening of Tool Steels by Laser Alloying and Nitriding. Russ. Eng. Res. 2022, 42, 185–187. https://doi.org/10.3103/S1068798X22020058.

  • 26.

    Pedroso, A.F.V.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Advanced Techniques for Extending the Service Life of Injection Moulding Tools: A Brief Review. In Advances in Design, Simulation and Manufacturing VIII; Ivanov, V.; Silva, F.J.G., Trojanowska, J., et al., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 77–84.

  • 27.

    Silva, F.; Martinho, R.; Andrade, M.; et al. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study. Coatings 2017, 7, 28.

  • 28.

    Pillai, V.V.; Ramasubramanian, B.; Sequerth, O.; et al. Nanomaterial advanced smart coatings: Emerging trends shaping the future. Appl. Mater. Today 2025, 42, 102574. https://doi.org/10.1016/j.apmt.2024.102574.

  • 29.

    Chen, B. Progress in Additive Manufacturing of High-Entropy Alloys. Materials 2024, 17, 5917.

  • 30.

    Qiao, Y.; Ni, Y.; Yang, K.; et al. Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities. Materials 2025, 18, 2989.

  • 31.

    Feng, S.; Kamat, A.M.; Pei, Y. Design and fabrication of conformal cooling channels in molds: Review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121082.

  • 32.

    Mumtaz, N.; Li, Y.; Artiaga, R.; et al. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials—A review. Heliyon 2024, 10, e25381. https://doi.org/10.1016/j.heliyon.2024.e25381.

  • 33.

    Chan, Y.L.; Diegel, O.; Xu, X. A machined substrate hybrid additive manufacturing strategy for injection moulding inserts. Int. J. Adv. Manuf. Technol. 2021, 112, 577–588. https://doi.org/10.1007/s00170-020-06366-8.

  • 34.

    Kushwaha, A.K.; Rahman, M.H.; Slater, E.; et al. 1—Powder bed fusion–based additive manufacturing: SLS, SLM, SHS, and DMLS. In Tribology of Additively Manufactured Materials; Kumar, P., Misra, M., Menezes, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–37.

  • 35.

    Chalicheemalapalli Jayasankar, D.; Tröster, T.; Marten, T. Optimizing Injection Molding Tool Design with Additive Manufacturing: A Focus on Thermal Performance and Process Efficiency. Materials 2025, 18, 571.

  • 36.

    Bogaerts, L.; Faes, M.; Bergen, J.; et al. Influence of thermo-mechanical loads on the lifetime of plastic inserts for injection moulds produced via additive manufacturing. Procedia CIRP 2021, 96, 109–114. https://doi.org/10.1016/j.procir.2021.01.061.

  • 37.

    Pinto, G. F.; Almeida, D.; Silva, F.J.G.; et al. Correlating Cutting Performance and Surface Roughness under Different Bias Using TiAlTaN Coated Milling Tools. J. Mech. Eng. Manuf. 2025, 1, 7. https://doi.org/10.53941/jmem.2025.100007.

  • 38.

    la Monaca, A.; Murray, J.W.; Liao, Z.; et al. Surface integrity in metal machining—Part II: Functional performance. Int. J. Mach. Tools Manuf. 2021, 164, 103718. https://doi.org/10.1016/j.ijmachtools.2021.103718.

  • 39.

    Islam, S.T.; Chattopadhyay, H. 4.23—In-mold coating: The current state-of-art. In Comprehensive Materials Processing, 2nd ed.; Hashmi, S.; Ed.; Elsevier: Oxford, UK, 2024; pp. 380–386.

  • 40.

    Schoenherr, M.; Ruehl, H.; Guenther, T.; et al. Adhesion-Induced Demolding Forces of Hard Coated Microstructures Measured with a Novel Injection Molding Tool. Polymers 2023, 15, 1285.

  • 41.

    Martinho, R.P.; Silva, F.J.G.; Alexandre, R.J.D.; et al. TiB2 Nanostructured Coating for GFRP Injection Moulds. J. Nanosci. Nanotechnol. 2011, 11, 5374–5382. https://doi.org/10.1166/jnn.2011.3772.

  • 42.

    Azarian, M.; Yu, H.; Shiferaw, A.T.; et al. Do We Perform Systematic Literature Review Right? A Scientific Mapping and Methodological Assessment. Logistics 2023, 7, 89. https://doi.org/10.3390/logistics7040089.

  • 43.

    Tóth, Á.; Suta, A.; Pimentel, J.; et al. A comprehensive, semi-automated systematic literature review (SLR) design: Application to P-graph research with a focus on sustainability. J. Clean. Prod. 2023, 415, 137741. https://doi.org/10.1016/j.jclepro.2023.137741.

  • 44.

    Moher, D.; Liberati, A.; Tetzlaff, J.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007.

  • 45.

    Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; et al. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. https://doi.org/10.1002/cl2.1230.

  • 46.

    Bergstrom, J.; Thuvander, F.; Devos, P.; et al. Wear of die materials in full scale plastic injection moulding of glass fibre reinforced polycarbonate. Wear 2001, 251, 1511–1521. https://doi.org/10.1016/s0043-1648(01)00787-6. (In English)

  • 47.

    Dimitriu, F.; Seghedin, N.-E.; Chitariu, D.-F. An Overview on Advances in Injection Moulding Remanufacturing. Bull. Polytech. Inst. Iași. Mach. Constr. Sect. 2023, 69, 9–17. https://doi.org/10.2478/bipcm-2023-0001.

  • 48.

    Jameson, C.; Devine, D.M.; Keane, G.; et al. A Comparative Analysis of Mechanical Properties in Injection Moulding (IM), Fused Filament Fabrication (FFF), and Arburg Plastic Freeforming (APF) Processes. Polymers 2025, 17, 990.

  • 49.

    Yuan, Y.; Lin, Y.; Wang, W.; et al. Strain-Controlled Thermal–Mechanical Fatigue Behavior and Microstructural Evolution Mechanism of the Novel Cr-Mo-V Hot-Work Die Steel. Materials 2025, 18, 334.

  • 50.

    Zabala, B.; Fernandez, X.; Rodriguez, J.C.; et al. Mechanism-based wear models for plastic injection moulds. Wear 2019, 440-441, 203105. https://doi.org/10.1016/j.wear.2019.203105.

  • 51.

    Martinho, P.G.; Pouzada, A.S. Alternative materials in moulding elements of hybrid moulds: Structural integrity and tribological aspects. Int. J. Adv. Manuf. Technol. 2021, 113, 351–363. https://doi.org/10.1007/s00170-021-06630-5.

  • 52.

    Freitas, F.R.S.; Casais, R.C.B.; Silva, F.J.G.; et al. Wear Behavior of TiAlN/DLC Coating on Tools in Milling Copper–Beryllium Alloy AMPCOLOY® 83. Coatings 2024, 14, 1354.

  • 53.

    Gülçür, M.; Wilson, P.; Donnelly, M.; et al. X-ray computed tomography for predictive quality assessment, 3D visualisation of micro-injection mouldings and soft-tool deformation. Mater. Des. 2023, 227, 111741. https://doi.org/10.1016/j.matdes.2023.111741.

  • 54.

    Sebbe, N.P.V.; Freitas, F.R.; Casais, R.; et al. Investigations on Milling Operations of AMPCO Using TIALN/DLC Coatings: Tool Wear and Surface Roughness. J. Tribol. 2026, 148, 014204. https://doi.org/10.1115/1.4069433.

  • 55.

    Wu, S.; Du, J.; Liang, J.; et al. Characterization and Comparison of Polymer Melt Fluidity Across Three Ultrasonic Plasticization Molding Technologies. Polymers 2025, 17, 2576.

  • 56.

    Brettmann, B.K.; Kalman, J.; McCollum, J.M.; et al. Challenges and opportunities in manufacturing highly filled polymers. npj Adv. Manuf. 2025, 2, 34. https://doi.org/10.1038/s44334-025-00046-9.

  • 57.

    Scheuer, C.J.; Cardoso, R.P.; Brunatto, S.F. An overview on plasma-assisted thermochemical treatments of martensitic stainless steels*. Surf. Topogr. : Metrol. Prop. 2023, 11, 013001. https://doi.org/10.1088/2051-672X/acb372.

  • 58.

    Wang, X.-N.; Chen, K.; Li, Q.-D.; et al. Wu. Effect of novel carburizing-carbonitriding heat treatment on the microstructure, surface hardness, and wear resistance of 18Cr2Ni4WA steel. Mater. Today Commun. 2025, 46, 112610. https://doi.org/10.1016/j.mtcomm.2025.112610.

  • 59.

    Dalibón, E.L.; Guitar, M.A.; Trava-Airoldi, V.; et al. Plasma Nitriding and DLC Coatings for Corrosion Protection of Precipitation Hardening Stainless Steel. Adv. Eng. Mater. 2016, 18, 826–832. https://doi.org/10.1002/adem.201500411.

  • 60.

    Calderón, J.C.; Koch, L.; Bandl, C.; et al. Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools. Surf. Coat. Technol. 2020, 399, 126152. https://doi.org/10.1016/j.surfcoat.2020.126152.

  • 61.

    Ye, C.; Chen, X.; Wang, L.; et al. Highly enhanced joint strength of direct-injection-moulded polyphenylene sulphide-magnesium composite by PEO coated interface. Surf. Coat. Technol. 2020, 404, 126565. https://doi.org/10.1016/j.surfcoat.2020.126565.

  • 62.

    Huang, K.; Zheng, Z.; Lin, C.; et al. Microstructure characterization and high-temperature wear behavior of plasma nitriding mold steel. Surf. Coat. Technol. 2024, 492, 131210. https://doi.org/10.1016/j.surfcoat.2024.131210.

  • 63.

    Yang, G.; Pan, L.; Deng, J.; et al. Effect of gas nitriding on microhardness and microstructure of laser cladding iron-based alloy coating. J. Laser Appl. 2025, 37, 022016. https://doi.org/10.2351/7.0001749.

  • 64.

    Sim, A.; Park, C.; Kang, N.; et al. Effect of laser-assisted nitriding with a high-power diode laser on surface hardening of aluminum-containing martensitic steel. Opt. Laser Technol. 2019, 116, 305–314. https://doi.org/10.1016/j.optlastec.2019.03.040.

  • 65.

    Krizsma, S.; Mészáros, L.; Kovács, N.K.; et al. Expanding the applicability of material jetting–printed photopolymer prototype injection moulds by gamma irradiation post-treatment. J. Manuf. Process. 2025, 134, 135–145. https://doi.org/10.1016/j.jmapro.2024.12.037.

  • 66.

    Lv, X.; Dong, W.; Sheng, Y.; et al. Enhancing joint strength in direct-injection-molded PPS-Ti composite through plasma electrolytic oxidation coated interfaces. Surf. Coat. Technol. 2025, 499, 131893. https://doi.org/10.1016/j.surfcoat.2025.131893.

  • 67.

    Yan, H.; Zhao, L.; Chen, Z.; et al. Investigation of the Surface Properties and Wear Properties of AISI H11 Steel Treated by Auxiliary Heating Plasma Nitriding. Coatings 2020, 10, 528.

  • 68.

    Bobzin, K.; Brögelmann, T.; Gillner, A.; et al. Laser-structured high performance PVD coatings. Surf. Coat. Technol. 2018, 352, 302–312. https://doi.org/10.1016/j.surfcoat.2018.07.094.

  • 69.

    Sorgato, M.; Masato, D.; Lucchetta, G. Tribological effects of mold surface coatings during ejection in micro injection molding. J. Manuf. Process. 2018, 36, 51–59. https://doi.org/10.1016/j.jmapro.2018.09.022.

  • 70.

    Sorgato, M.; Masato, D.; Piccolo, L.; et al. Plastic intensity reduction using thermally insulating coatings for injection molds. CIRP J. Manuf. Sci. Technol. 2020, 30, 79–86. https://doi.org/10.1016/j.cirpj.2020.04.004.

  • 71.

    Jaud, A.; Palmares, L.M.; Ravaux, A.; et al. Comparative analysis of structural characteristics and thermal insulation properties of ZrO2 thin films deposited via chemical and physical vapor phase processes. Thin Solid Film. 2024, 805, 140516. https://doi.org/10.1016/j.tsf.2024.140516.

  • 72.

    Yiu, P.; Bönninghoff, N.; Chu, J.P. Evaluation of Cr-based thin film metallic glass as a potential replacement of PVD chromium coating on plastic mold surface. Surf. Coat. Technol. 2022, 442, 128274. https://doi.org/10.1016/j.surfcoat.2022.128274.

  • 73.

    Tillmann, W.; Stangier, D.; Lopes Dias, N.F.; et al. Reduction of Ejection Forces in Injection Molding by Applying Mechanically Post-Treated CrN and CrAlN PVD Films. J. Manuf. Mater. Process. 2019, 3, 88.

  • 74.

    Santos, M.D.; Fukumasu, N.K.; Tschiptschin, A.P.; et al. Effect of Ti/Si and Ti/TiN/Si interlayers on the structure, properties, and tribological behavior of an a-C film deposited onto a C17200 copper-beryllium alloy. Surf. Coat. Technol. 2022, 441, 128561. https://doi.org/10.1016/j.surfcoat.2022.128561.

  • 75.

    Ruehl, H.; Guenther, T.; Zimmermann, A. Direct Processing of PVD Hard Coatings via Focused Ion Beam Milling for Microinjection Molding. Micromachines 2023, 14, 294.

  • 76.

    Sütőová, A.; Kočiško, R.; Petroušek, P.; et al. Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings. Coatings 2024, 14, 1043.

  • 77.

    Sun, L.; Yuan, G.; Gao, L.; et al. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. https://doi.org/10.1038/s43586-020-00005-y.

  • 78.

    Frettlöh, V.; Mumme, F.; Fornalczyk, G.; et al. Ceramic Coatings via MOCVD in Injection Molding Tools to Influence Thermal and Demolding Properties∗. HTM J. Heat Treat. Mater. 2020, 75, 121–133. https://doi.org/10.3139/105.110404.

  • 79.

    Neto, V.F.; Vaz, R.; Oliveira, M.S.A.; et al. CVD diamond-coated steel inserts for thermoplastic mould tools—Characterization and preliminary performance evaluation. J. Mater. Process. Technol. 2009, 209, 1085–1091. https://doi.org/10.1016/j.jmatprotec.2008.03.012.

  • 80.

    Yang, H.; Yilmaz, G.; Han, G.; et al. A quick response and tribologically durable graphene heater for rapid heat cycle molding and its applications in injection molding. Appl. Therm. Eng. 2020, 167, 114791. https://doi.org/10.1016/j.applthermaleng.2019.114791.

  • 81.

    Xiao, N.; Tang, J.; Zhou, S.; et al. Current research on the design, properties and applications of tribological materials: A review. RSC Adv. 2025, 15, 34669–34717. https://doi.org/10.1039/d5ra02780b.

  • 82.

    Tacikowski, M.; Słoma, J.; Jakieła, R.; et al. Diffusion Nitride Surface Layers on Aluminum Substrates Produced by Hybrid Method Using Gas Nitriding. Metals 2024, 14, 524.

  • 83.

    Bobzin, K.; Hopmann, C.H.; Gillner, A.; et al. Enhanced replication ratio of injection molded plastic parts by using an innovative combination of laser-structuring and PVD coating. Surf. Coat. Technol. 2017, 332, 474–483. https://doi.org/10.1016/j.surfcoat.2017.09.068.

  • 84.

    Kuo, C.-C.; Lin, B.-H.; Luo, Z.-T. A new hybrid process combining rapid tooling and machining to manufacture an injection mold with micro features. Int. J. Adv. Manuf. Technol. 2022, 119, 6349–6360. https://doi.org/10.1007/s00170-021-08529-7.

  • 85.

    Bobzin, K.; Brögelmann, T.; Grundmeier, G.; et al. (Cr,Al)N/(Cr,Al)ON Oxy-nitride Coatings deposited by Hybrid dcMS/HPPMS for Plastics Processing Applications. Surf. Coat. Technol. 2016, 308, 394–403. https://doi.org/10.1016/j.surfcoat.2016.07.093.

  • 86.

    Török, D.; Zink, B.; Ageyeva, T.; et al. Laser powder bed fusion and casting for an advanced hybrid prototype mold. J. Manuf. Process. 2022, 81, 748–758. https://doi.org/10.1016/j.jmapro.2022.07.034.

  • 87.

    Marin, F.; de Souza, A.F.; Ahrens, C.H.; et al. A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds. Int. J. Adv. Manuf. Technol. 2021, 113, 1561–1576. https://doi.org/10.1007/s00170-021-06720-4.

  • 88.

    Carrupt, M.C.; Piedade, A.P. Modification of the Cavity of Plastic Injection Molds: A Brief Review of Materials and Influence on the Cooling Rates. Materials 2021, 14, 7249.

  • 89.

    Meng, X.; Ding, L.; Xiao, H.; et al. A study of microstructures and corrosion behavior of HVOF/PVD duplex coating against 10 vol% HCl solution. Surf. Coat. Technol. 2024, 476, 130227. https://doi.org/10.1016/j.surfcoat.2023.130227.

  • 90.

    Aktaş Çelik, G.; Yarar, E.; Atapek, Ş.H.; et al. Prediction of contact stress and wear analysis of nitrided and CAPVD coated AISI H11 steel under dry sliding conditions. Eng. Fail. Anal. 2024, 165, 108738. https://doi.org/10.1016/j.engfailanal.2024.108738.

  • 91.

    Maskavizan, A.J.; Quintana, J.P.; Dalibón, E.L.; et al. Evaluation of wear and corrosion resistance in acidic and chloride solutions of Cathodic Arc PVD chromium nitride coatings on untreated and plasma nitrided AISI 4140 steel. Surf. Coat. Technol. 2024, 494, 131476. https://doi.org/10.1016/j.surfcoat.2024.131476.

  • 92.

    Burdin, L.; Brulez, A.-C.; Mazurczyk, R.; et al. Texturing injection molds using microelectronics techniques. Surf. Coat. Technol. 2025, 502, 131989. https://doi.org/10.1016/j.surfcoat.2025.131989.

  • 93.

    Saikia, M.; Dutta, T.; Jadhav, N.; et al. Insights into the Development of Corrosion Protection Coatings. Polymers 2025, 17, 1548.

  • 94.

    Kern, W.; Müller, M.; Bandl, C.; et al. Anti-Adhesive Organosilane Coating Comprising Visibility on Demand. Polymers 2022, 14, 4006.

  • 95.

    Guan, T.; Zaki, S.; Haasbroek, P.D.; et al. Precision electroforming of nickel nanocomposite mould for defects-free demoulding in polymer micro replication: Surface properties, performance validation and mould release mechanism. J. Manuf. Process. 2023, 94, 196–213. https://doi.org/10.1016/j.jmapro.2023.03.054.

  • 96.

    Guan, T.-Y.; Su, Q.-L.; Song, R.-J.; et al. High-performance nano-PTFE reinforced nickel mold for defect-free micro injection molding of surface micro structures. Adv. Manuf. 2025. https://doi.org/10.1007/s40436-025-00568-7.

  • 97.

    Wang, S.; Cui, Z.; Kimura, F.; et al. A chemical-free Al-Mg alloy pretreatment method for metal-polymer direct joining by heat and water treatment. Surf. Interfaces 2025, 56, 105667. https://doi.org/10.1016/j.surfin.2024.105667.

  • 98.

    Gateman, S.M.; Alidokht, S.A.; Mena-Morcillo, E.; et al. Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies. Surf. Coat. Technol. 2021, 426, 127790. https://doi.org/10.1016/j.surfcoat.2021.127790.

  • 99.

    Hussin, M.S.; Amin Omar, S.M.; Hamat, S.; et al. Representative Volume Element in Photopolymerization Additive Manufacturing Techniques for Mold Production: A Comprehensive Structured Review. Malays. J. Compos. Sci. Manuf. 2025, 16, 184–200. https://doi.org/10.37934/mjcsm.16.1.184200.

  • 100.

    Masoudi, S.; Das, B.K.; Aamir, M.; et al. Recent advancement in conformal cooling channels: A review on design, simulation and future trends. Comput. Aided Des. 2025, 186-187, 103899. https://doi.org/10.1016/j.cad.2025.103899.

  • 101.

    Ahn, C.; Söderhjelm, C.; Apelian, D. Enabling Technologies for Thermal Management During Permanent Mold Casting: A Critical Review. International Journal of Metalcasting, 2025. https://doi.org/10.1007/s40962-025-01784-4.

  • 102.

    Weise, J.; Lehmhus, D.; Sandfuchs, J.; et al. Syntactic Iron Foams’ Properties Tailored by Means of Case Hardening via Carburizing or Carbonitriding. Materials 2021, 14, 4358.

  • 103.

    Kanbur, B.B.; Zhou, Y.; Shen, S.; et al. Metal Additive Manufacturing of Plastic Injection Molds with Conformal Cooling Channels. Polymers 2022, 14, 424.

  • 104.

    Vetter, J.; Beneder, S.; Schmidt, M. Material-tailored tool inserts for injection moulding using material extrusion multi-material Additive Manufacturing. Procedia CIRP 2024, 124, 231–234. https://doi.org/10.1016/j.procir.2024.08.106.

  • 105.

    Barragan De Los Rios, G.A.; Ferreira, R.; Mariani, F.E.; et al. Study of the surface roughness of a remanufactured bimetallic AISI 1045 and 316L SS part obtained by hybrid manufacturing (DED/HSM). Int. J. Adv. Manuf. Technol. 2023, 124, 3185–3199. https://doi.org/10.1007/s00170-022-09179-z.

  • 106.

    Fernandez, E.; Edeleva, M.; Fiorio, R.; et al. Increasing the Sustainability of the Hybrid Mold Technique through Combined Insert Polymeric Material and Additive Manufacturing Method Design. Sustainability 2022, 14, 877.

  • 107.

    Wilson, N.; Gupta, M.; Mazur, M.; et al. Analysis of self-supporting conformal cooling channels additively manufactured by hybrid directed energy deposition for IM tooling. Int. J. Adv. Manuf. Technol. 2024, 132, 421–441. https://doi.org/10.1007/s00170-024-13291-7.

  • 108.

    García-Cabezón, C.; Naranjo, J.A.; García-Hernández, C.; et al. Using fused filament fabrication to improve the tribocorrosion behaviour of 17-4 PH SS in comparison to other metal forming techniques. Friction 2024, 12, 2325–2343. https://doi.org/10.1007/s40544-024-0885-4.

  • 109.

    Marqués, A.; Dieste, J.A.; Monzón, I.; et al. Improvements in Injection Moulds Cooling and Manufacturing Efficiency Achieved by Wire Arc Additive Manufacturing Using Conformal Cooling Concept. Polymers 2024, 16, 3057.

  • 110.

    Solís, J.E.; Claver, J.; Marín, M.M.; et al. Injection Mold for Plastics Manufactured by Metal-FFF with Conformal Cooling Channels: A Proof-of-Concept Case. Machines 2025, 13, 784.

  • 111.

    Wang, S.; Xu, S.; Jing, P.; et al. Experimental Study on the Repair of Molds Using High-Entropy Alloy Coatings Prepared by Laser Additive Manufacturing. steel research international 2025, 96, 84–93. https://doi.org/10.1002/srin.202400680.

  • 112.

    Zhao, Z.; Perini, M.; Pellizzari, M. Laser-Directed Energy Deposition of AISI H13 on copper-beryllium alloy substrates with Ni buffer. Surf. Coat. Technol. 2025, 497, 131772. https://doi.org/10.1016/j.surfcoat.2025.131772.

  • 113.

    Nasiri, S.; Khosravani, M.R.; Reinicke, T.; et al. Digital Twin Modeling for Smart Injection Molding. J. Manuf. Mater. Process. 2024, 8, 102.

  • 114.

    Ahmmed, M.S.; Khan, L.; Mahmood, M.A.; et al. Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges. Machines 2025, 13, 691.

  • 115.

    Qi, X.; Li, J.; Liang, Y.; et al. Optimization of Mold Heating Structure Parameters Based on Cavity Surface Temperature Uniformity and Thermal Response Rates. Polymers 2025, 17, 184.

  • 116.

    Gaspar-Cunha, A.; Melo, J.; Marques, T.; et al. A Review on Injection Molding: Conformal Cooling Channels, Modelling, Surrogate Models and Multi-Objective Optimization. Polymers 2025, 17, 919.

  • 117.

    Redeker, J.; Watschke, H.; Wurzbacher, S.; et al. Cost-Efficient Injection Mold Design: A Holistic Approach to Leveraging Additive Manufacturing’s Design Freedom Through Topology Optimization. Appl. Sci. 2025, 15, 10923.

  • 118.

    Šakalys, R.; O’Hara, C.; Kariminejad, M.; et al. Embedding a surface acoustic wave sensor and venting into a metal additively manufactured injection mould tool for targeted temperature monitoring. Int. J. Adv. Manuf. Technol. 2024, 130, 5627–5640. https://doi.org/10.1007/s00170-023-12932-7.

  • 119.

    Silva, H.M.; de Almeida Vasques, C.M.; Rodrigues, H.L.; et al. A methodology for the optimal placement of conformal cooling channels in injection molds: 2D transient heat transfer analysis. Int. J. Adv. Manuf. Technol. 2024, 132, 5261–5274. https://doi.org/10.1007/s00170-024-13474-2.

  • 120.

    Wilson, N.; Gupta, M.; Patel, M.; et al. Generative design of conformal cooling channels for hybrid-manufactured injection moulding tools. Int. J. Adv. Manuf. Technol. 2024, 133, 861–888. https://doi.org/10.1007/s00170-024-13754-x.

  • 121.

    Storti, B.A.; Sobotka, V. A numerical framework for three-dimensional optimization of cooling channels in thermoplastic printed molds. Appl. Therm. Eng. 2024, 238, 121988. https://doi.org/10.1016/j.applthermaleng.2023.121988.

  • 122.

    Wagner, G.; Nóbrega, J.M. Conformal Cooling Channels in Injection Molding and Heat Transfer Performance Analysis Through CFD—A Review. Energies 2025, 18, 1972.

Share this article:
How to Cite
Pedroso, A. F. V.; Durão, L. M.; Martinho, R. P.; Brito, M.; Alexandre, R. J. D.; Markopoulos, A. P. Recent Advances and Future Trends in Extending the Service Life of Injection Moulding Tools: A Comprehensive Review. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100012.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.