2601002921
  • Open Access
  • Article

AI-Powered Data Management to Optimize Data Collection and Processing in a Painting Laboratory

  • Maria Teresa Ribeiro Pereira 1, 2, *,   
  • Marisa João Guerra Pereira 1, 2,   
  • Miguel Guedes Tavares 2,   
  • André Martins Guimarães 3, 4,   
  • Hermilio Vilarinho 5

Received: 04 Nov 2025 | Revised: 20 Jan 2026 | Accepted: 23 Jan 2026 | Published: 10 Feb 2026

Abstract

Industrial laboratories often remain under-digitized compared to production lines, creating a gap between data acquisition and analytical intelligence, critical for advanced quality control. This study addresses this gap by proposing and validating a novel framework that combines Low-Code digitalisation tools with Machine Learning (ML) and Causal Inference to optimise data collection and analysis in an automotive painting laboratory. A Microsoft Power Apps-based platform was developed in order to digitalise all measurement records, eliminating manual transcription errors (previously ≈ 40.01%) and reducing data-handling time by up to 34% of an operator’s shift, while enabling centralised, traceable storage and Power BI integration. Four datasets were used to assess predictive capacity with Random Forest, XGBoost and Neural Networks; Random Forest consistently provided the most stable results—Mean Absolute Error (MAE) of 0.972, Mean Absolute Percentage Error (MAPE) of 16.45%, and Root Mean Square Error (RMSE) of 1.307. Causal models (Linear Regression, DoWhy, Causal Forest, Double Machine Learning) consistently identified ultrafiltrate I solid content of the electrodeposition process as a dominant causal factor for defects. This study provides a novel framework that bridges digitalisation and ML-based causal reasoning in laboratory settings, offering a scalable approach that can be extended and replicated in other industrial sectors, aiming to develop smart, data-driven quality control systems.

References 

  • 1.

    Pinto, B.; Silva, F.J.G.; Costa, T.; et al. A strategic model to take the first step towards industry 4.0 in SMEs. Procedia Manuf. 2019, 18, 637–645. https://doi.org/10.1016/j.promfg.2020.01.082.

  • 2.

    Pop, L.D. Digitalization of the System of Data Analysis and Collection in an Automotive Company. Procedia Manuf. 2020, 46, 238–243. https://doi.org/10.1016/j.promfg.2020.03.035.

  • 3.

    Mehta, S.; Rastogi, A.K. Impact of Digitalization on Automotive Industry: Challenges & Opportunities. BISM 2017, 1, 81–92. Available: http://bism2017.globalconf.org.

  • 4.

    Baiyere, A.; Salmela, H.; Tapanainen, T. Digital transformation and the new logics of business process management. Eur. J. Inf. Syst. 2020, 29, 238–259. https://doi.org/10.1080/0960085X.2020.1718007.

  • 5.

    Brennen, J.S.; Kreiss, D. Digitalization. In The International Encyclopedia of Communication Theory and Philosophy; Wiley: Hoboken, NJ, USA, 2016; pp. 1–11. https://doi.org/10.1002/9781118766804.wbiect111.

  • 6.

    Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; et al. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022.

  • 7.

    Bock, A.C.; Frank, U. Low-Code Platform. Bus. Inf. Syst. Eng. 2021, 63, 733–740. https://doi.org/10.1007/s12599-021-00726-8.

  • 8.

    Waszkowski, R. Low-code platform for automating business processes in manufacturing. IFAC PapersOnLine 2019, 52, 376–381. https://doi.org/10.1016/j.ifacol.2019.10.060.

  • 9.

    Haddara, M.; Zach, O. ERP Systems in SMEs: A Literature Review. In Proceedings of the 44th Hawaii International Conference on System Sciences, Kauai, HI, USA, 4–7 January 2011. https://doi.org/10.1109/HICSS.2011.191.

  • 10.

    Akhtar, S.; Shahzad, S.; Zaheer, A.; et al. Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead. Energies 2023, 16, 4060. https://doi.org/10.3390/en16104060.

  • 11.

    Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. https://doi.org/10.3390/su15097087.

  • 12.

    Chatfield, C.; Xing, H. The Analysis of Time Series, 7th ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. https://doi.org/10.1201/9781351259446.

  • 13.

    Pesaran, M.H.; Timmermann, A. How costly is it to ignore breaks when forecasting the direction of a time series? Int. J. Forecast. 2004, 20, 411–425. https://doi.org/10.1016/S0169-2070(03)00068-2.

  • 14.

    Yaseen, Z.M. A New Benchmark on Machine Learning Methodologies for Hydrological Processes Modelling: A Comprehensive Review for Limitations and Future Research Directions. Knowl. Based Eng. Sci. 2023, 4, 65–103. https://doi.org/10.51526/kbes.2023.4.3.65-103.

  • 15.

    Lolla, R.; Harper, M.; Lunn, J.; et al. Machine Learning Techniques for Predicting Risks of Late Delivery. In Data Science and Emerging Technologies; Springer: Singapore, 2023; pp. 343–356. https://doi.org/10.1007/978-981-99-0741-0_25.

  • 16.

    Liu, X.; Wang, W. Deep Time Series Forecasting Models: A Comprehensive Survey. Mathematics 2024, 12, 1504. https://doi.org/10.3390/math12101504.

  • 17.

    Lopes, D.R.; Ramos, F.R.; Costa, A.; et al. Forecasting Models for Time-Series: A Comparative Study Between Classical Methodologies and Deep Learning. In Proceedings of the SPE 2021—XXV Congresso Da Sociedade Portuguesa de Estatística, Online, 13–16 October 2021. https://doi.org/10.13140/RG.2.2.12559.92328.

  • 18.

    Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. https://doi.org/10.1007/s12525-021-00475-2.

  • 19.

    Peres, R.S.; Barata, J.; Leitao, P.; Garcia, G. Multistage Quality Control Using Machine Learning in the Automotive Industry. IEEE Access 2019, 7, 79908–79916. https://doi.org/10.1109/ACCESS.2019.2923405.

  • 20.

    Crowley, J.L. Pattern Recognition and Machine Learning Generative Networks: EigenSpace Coding, Auto-Encoders, Variational Autoencoders and Generative Adversarial Networks. 2020.

  • 21.

    Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.

  • 22.

    Luckow, A.; Cook, M.; Ashcraft, N.; et al. Deep Learning in the Automotive Industry: Applications and Tools. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 3759–3768. https://doi.org/10.1109/BigData.2016.7841045.

  • 23.

    Samek, W.; Wiegand, T.; Müller, K.-R. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. arXiv 2017, arXiv:1708.08296.

  • 24.

    Ghosal, S.G.; Dey, S.; Chattopadhyay, P.P.; et al. Designing optimized ternary catalytic alloy electrode for efficiency improvement of semiconductor gas sensors using a machine learning approach. Decis. Mak. Appl. Manag. Eng. 2021, 4, 126–139. https://doi.org/10.31181/dmame210402126g.

  • 25.

    Ramos, F.R.; Pereira, M.T.; Oliveira, M.; et al. The memory concept behind deep neural network models: An application in time series forecasting in the e-Commerce sector. Decis. Mak. Appl. Manag. Eng. 2023, 6, 668–690. https://doi.org/10.31181/dmame622023695.

  • 26.

    Marchese Robinson, R.L.; Palczewska, A.; Palczewski, J.; et al. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets. J. Chem. Inf. Model. 2017, 57, 1773–1792. https://doi.org/10.1021/acs.jcim.6b00753.

  • 27.

    Yao, B.; Feng, T. Machine learning in automotive industry. Adv. Mech. Eng. 2018, 10. https://doi.org/10.1177/1687814018805787.

  • 28.

    Tang, T. Analysis and Demand Forecasting Based On e-Commerce Data. In Proceedings of the 2023 6th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–29 May 2023; pp. 64–68. https://doi.org/10.1109/ICAIBD57115.2023.10206072.

  • 29.

    Fouad, A.M.; Wefki, H.; Kouta, H. AI-Driven Raw Material Demand Forecasting: Towards Project Management Practices. J. Supply Chain Manag. Sci. 2025, 6. https://doi.org/10.59490/jscms.2025.8136.

  • 30.

    Ma, B.J.; Jackson, I.; Huang, M.; et al. A data-driven and context-aware approach for demand forecasting in the beverage industry. Int. J. Logist. Res. Appl. 2025, 6. https://doi.org/10.59490/jscms.2025.8136.

  • 31.

    Hammam, I.M.; El-Kharbotly, A.K.; Sadek, Y.M. Adaptive demand forecasting framework with weighted ensemble of regression and machine learning models along life cycle variability. Sci. Rep. 2025, 15, 38482. https://doi.org/10.1038/s41598-025-23352-w.

  • 32.

    Santoro, D.; Ciano, T.; Ferrara, M. A comparison between machine and deep learning models on high stationarity data. Sci. Rep. 2024, 14, 19409. https://doi.org/10.1038/s41598-024-70341-6.

  • 33.

    Yao, L.; Chu, Z.; Li, S.; et al. A Survey on Causal Inference. ACM Comput. Surv. 2021, 54, 1–46. https://doi.org/10.1145/3444944.

  • 34.

    Kaddour, J.; Lynch, A.; Liu, Q.; et al. Causal Machine Learning: A Survey and Open Problems. arXiv 2022, arXiv:2206.15475.

  • 35.

    Saltz, J.S.; Hotz, N. Identifying the Most Common Frameworks Data Science Teams Use to Structure and Coordinate Their Projects. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 2038–2042. https://doi.org/10.1109/BigData50022.2020.9377813.

  • 36.

    Schröer, C.; Kruse, F.; Gómez, J.M. A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Comput. Sci. 2021, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199.

  • 37.

    Shafique, U.; Qaiser, H. A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA). Int. J. Innov. Sci. Res. 2014, 12, 217–222.

  • 38.

    Huang, H.N.; Chen, H.M.; Lin, W.W.; et al. Employing feature engineering strategies to improve the performance of machine learning algorithms on echocardiogram dataset. Digit. Health 2023, 9. https://doi.org/10.1177/20552076231207589.

  • 39.

    Ara Mowri, R.; Siddula, M.; Roy, K. A Comparative Performance Analysis of Explainable Machine Learning Models with and without RFECV Feature Selection Technique Towards Ransomware Classification. IEEE Access 2022, 10, 130180–130195. https://doi.org/10.1109/ACCESS.2022.3228041.

  • 40.

    Paolanti, M.; Romeo, L.; Felicetti, A.; et al. Machine Learning Approach for Predictive Maintenance in Industry 4.0. In Proceedings of the 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Oulu, Finland, 2–4 July 2018. https://doi.org/10.1109/MESA.2018.8449150.

  • 41.

    Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 2007, 24, 45–77. https://doi.org/10.2753/MIS0742-1222240302.

  • 42.

    Eiras, E.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. A Novel Fully Automatic Concept to Produce First Subset of Bowden Cables, Improving Productivity, Flexibility, and Safety. Machines 2023, 11, 992. https://doi.org/10.3390/machines11110992.

  • 43.

    Tojal, M.C.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Case-Based Product Development of a High-Pressure Die Casting Injection Subset Using Design Science Research. FME Trans. 2022, 50, 32–44. https://doi.org/10.5937/fme2201032T.

  • 44.

    Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. https://doi.org/10.1213/ANE.0000000000002864.

  • 45.

    Szeghalmy, S.; Fazekas, A. A Comparative Study of the Use of Stratified Cross-Validation and Distribution-Balanced Stratified Cross-Validation in Imbalanced Learning. Sensors 2023, 23, 2333. https://doi.org/10.3390/s23042333.

  • 46.

    Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. https://doi.org/10.3390/rs11020185.

  • 47.

    Li, W.; Cook, D.; Tanaka, E.; et al. A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol. J. Comput. Graph. Stat. 2024, 33, 1497–1511. https://doi.org/10.1080/10618600.2024.2344612.

  • 48.

    Lewis, C.D. Industrial and business forecasting methods. J. Forecast. 1983, 2, 194–196.

  • 49.

    Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688.

  • 50.

    Fu, X.; Li, J.; Zhang, H.; et al. Simulation and experimental research on nickel-based coating prepared by jet electrodeposition at different scanning speeds. Int. J. Adv. Manuf. Technol. 2022, 121, 1851–1866. https://doi.org/10.1007/s00170-022-09308-8.

  • 51.

    Pearl, J. The seven tools of causal inference, with reflections on machine learning. Commun. ACM 2019, 62, 54–60. https://doi.org/10.1145/3241036.

  • 52.

    Schölkopf, B.; Locatello, F.; Bauer, S.; et al. Toward Causal Representation Learning. Proc. IEEE 2021, 109, 612–634. https://doi.org/10.1109/JPROC.2021.3058954.

Share this article:
How to Cite
Pereira, M. T. R.; Guerra Pereira, M. J.; Tavares, M. G.; Guimarães, A. M.; Vilarinho, H. AI-Powered Data Management to Optimize Data Collection and Processing in a Painting Laboratory. Journal of Mechanical Engineering and Manufacturing 2026. https://doi.org/10.53941/jmem.2026.100011.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.