- 1.
Perazella, M.A. Renal vulnerability to drug toxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 1275–1283.
- 2.
Alshowiman, S.S.; Sahrah, A.; Alswailem, A.K.; et al. Iodinated contrast media. World J. Adv. Res. Rev. 2021, 9, 156–167.
- 3.
Azzalini, L.; Kalra, S. Contrast-induced acute kidney injury:definitions, epidemiology and implications. Int. Cardiol. Clin. 2020, 9, 299–309.
- 4.
Pisani, A.; Riccio, E.; Andreucci, M.; Faga, T.; Ashour, M.; Di nuzzi, A.; et al. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. Biomed Res. Int. 2013, 2013, 868321.
- 5.
Quintavalle, C.; Brenca, M.; De Micco, F.; et al. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis. Cell Death Dis. 2011, 2, e155.
- 6.
Heyman, S.N.; Rosen, S.; Rosenberger, C. Renal parenchymal hypoxia. hypoxia adaptation and the pathogenesis of radiocontrast nephropathy. Clin. J. Am. Soc. Nephrol. 2008, 3, 288–296.
- 7.
Agmon, Y.; Peleg, H.; Greenfeld, Z.; et al. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J. Clin. Investig. 1994, 94, 1069–1075.
- 8.
Lee, H.T.; Jan, M.; Bae, S.C.; et al. A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am. J. Physiol.-Renal Physiol. 2006, 290, F1367–F1375.
- 9.
Cho, E.; Ko, G.-J. The pathophysiology and the management of radiocontrast-induced nephropathy. Diagnostics 2022, 12, 180.
- 10.
Isaka, Y.; Hayashi, H.; Aonuma, K.; et al. Guidelines on the use of iodinated contrast media in patients with kidney disease 2018. Jpn. J. Radiol. 2020, 38, 3–46.
- 11.
Su, X.; Xie, X.; Liu, L.; et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: A systematic review and Bayesian network meta-analysis. Am. J. Kidney Dis. 2017, 69, 69–77.
- 12.
Topaloğlu, U.S.; Sipahioğlu, M.H.; Güntürk, İ.; et al. Effects of thymoquinone in prevention of experimental contrast-induced nephropathy in rats. Iran. J. Basic. Med. Sci. 2019, 22, 1432–1439.
- 13.
Spångberg-Viklund, B.; Berglund, J.; Nikonoff, T.; et al. Does prophylactic treatment with felodipine, a calcium antagonist, prevent low-osmolar contrast-induced renal dysfunction in hydrated diabetic and nondiabetic patients with normal or moderately reduced renal function? Scand. J. Urol. Nephrol. 1996, 30, 63–68.
- 14.
Biernacka, P.; Adamska, I.; Felisiak, K. The potential of Ginkgo biloba as a source of biologically active compounds—A review of the recent literature and patents. Molecules. 2023, 28, 3993.
- 15.
Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 2008, 73, R14–R19.
- 16.
Mahady, G. B. Ginkgo biloba for the prevention and treatment of cardiovascular disease: A review of the literature. J. Cardiovasc. Nurs. 2002, 16, 21–32.
- 17.
Yang, G.; Wang, Y.; Sun, J.; et al. Ginkgo biloba for mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Curr. Top. Med. Chem. 2016, 16, 520–528.
- 18.
Tabassum, N.E.; Das, R.; Lami, M.S.; et al. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications. Evid. Based Complement. Alternat. Med. 2022, 2022, 8288818.
- 19.
Abd-Ellah, M.F.; Mariee, A.D. Ginkgo biloba leaf extract (EGb 761) diminishes adriamycin-induced hyperlipidemic nephrotoxicity in rats: Association with nitric oxide production. Biotechnol. Appl. Biochem. 2007, 46, 35–40.
- 20.
Song, J.; Liu, D.; Feng, L.; et al. Protective effect of extract of Ginkgo biloba against cisplatin-induced nephrotoxicity. Evid. Based Complement. Alternat. Med. 2013, 2013, 846126.
- 21.
Sherif, I.O.; Al-Mutabagani, L.A.; Sarhan, O.M. Ginkgo biloba extract attenuates methotrexate-induced testicular injury in rats: Cross-talk between oxidative stress, inflammation, apoptosis and miRNA-29a expression. Integr. Cancer Ther. 2020, 19, 1534735420969814.
- 22.
Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990, 186, 421–431.
- 23.
Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212.
- 24.
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474.
- 25.
Ekstrand, M.I.; Falkenberg, M.; Rantanen, A.; et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 2004, 13, 935–944.
- 26.
Oriquat, G.A.; Ali, M.A.; Mahmoud, S.A.; et al. Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl. Physiol. Nut. Metab. 2019, 44, 357–364.
- 27.
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
- 28.
Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non- statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489.
- 29.
Nickolas, T.L.; Barasch, J.; Devarajan, P. Biomarkers in acute and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2008, 17, 127–132.
- 30.
Salazar, J.H. Overview of urea and creatinine. Lab. Med. 2014, 45, e19–e20.
- 31.
Bolignano, D.; Donato, V.; Coppolino, G.; et al. Neutrophil gelatinase–associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 2008, 52, 595–605.
- 32.
Devarajan, P. Neutrophil gelatinase-associated lipocalin: A troponin-like biomarker for human acute kidney injury. Nephrology. 2010, 15, 419–428.
- 33.
Andreucci, M.; Faga, T.; Riccio, E.; et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int. J. Nephrol. Renovasc. Dis. 2016, 9, 205–221.
- 34.
Heyman, S.N.; Rosen, S.; Khamaisi, M.; et al. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Investig. Radiol. 2010, 45, 188–195.
- 35.
Kusirisin, P.; Chattipakorn, S.C.; Chattipakorn, N. Contrast-induced nephropathy and oxidative stress: Mechanistic insights for better interventional approaches. J. Transl. Med. 2020, 18, 400.
- 36.
Mittal, M.; Siddiqui, M.R.; Tran, K.; et al. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167.
- 37.
Pello, R.; Martín, M.A.; Carelli, V.; et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum. Mol. Genet. 2008, 17, 4001–4011.
- 38.
Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 2017, 482, 426–431.
- 39.
Anderson, S.; Bankier, A.T.; Barrell, B.G.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465.
- 40.
Castellani, C.A.; Longchamps, R.J.; Sun, J.; et al. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020, 53, 214–223.
- 41.
Jin, L.; Yu, B.; Armando, I.; et al. Mitochondrial DNA-mediated inflammation in acute kidney injury and chronic kidney disease. Oxidative Med. Cell. Longev. 2021, 2021, 9985603.
- 42.
Servais, H.; Ortiz, A.; Devuyst, O.; et al. Renal cell apoptosis induced by nephrotoxic drugs: Cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 2008, 13, 11–32.
- 43.
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 2977–2992.
- 44.
Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Molec. Cell Biol. 2020, 21, 85–100.
- 45.
Subramaniam, R.M.; Suarez-Cuervo, C.; Wilson, R.F.; et al. Effectiveness of prevention strategies for contrast-induced nephropathy: A systematic review and meta-analysis. Ann. Intern. Med. 2016, 164, 406–416.
- 46.
Welz, A.N.; Emberger-Klein, A.; Menrad, K. Why people use herbal medicine: Insights from a focus-group study in Germany. BMC Complement. Alternat. Med. 2018, 18, 92.
- 47.
Tao, Z.; Jin, W.; Ao, M.; et al. Evaluation of the anti-inflammatory properties of the active constituentsin Ginkgo biloba for the treatment of pulmonary diseases. Food Funct. 2019, 10, 2209–2220.
- 48.
Grant, C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 2001, 39, 533–541.
- 49.
Fridovich, I. Superoxide anion radical (O2), superoxide dismutase, and related matters. J. Biolog. Chem. 1997, 272, 18515–18517.
- 50.
Song, W.; Guan, H.J.; Zhu, X.Z.; et al. Protective effect of bilobalide against nitric oxide-induced neurotoxicityin PC12 cells. Acta Pharmacol. Sin. 2000, 21, 415–420.
- 51.
He, X.; Li, L.; Tan, H.; et al. Atorvastatin attenuates contrast-induced nephropathy by modulating inflammatory responses through the regulation of JNK/p38/Hsp27 expression. J. Pharmacol. Sci. 2016, 131, 18–27.
- 52.
Farag, M.M.; Khalifa, A.A.; Elhadidy, W.F.; et al. Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. Naunyn Schiedeberg′s Arch. Pharmacol. 2021, 394, 1787–1801.
- 53.
Lee, C.-Y.; Yang, J.-J.; Lee, S.-S.; et al. Protective effect of Ginkgo biloba leaves extract, EGb761, on endotoxin-induced acute lung injury via a JNK-and Akt-dependent NFκB pathway. J. Agric. Food Chem. 2014, 62, 6337–6344.
- 54.
Gargouri, B.; Carstensen, J.; Bhatia, H.S.; et al. Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells. Phytomedicine 2018, 44, 45–55.
- 55.
Yeh, Y.C.; Liu, T.J.; Wang, L.C.; et al. A standardized extract of Ginkgo biloba suppresses doxorubicin-induced oxidative stress and p53-mediated mitochondrial apoptosis in rat testes. Br. J. Pharmacol. 2009, 156, 48–61.
- 56.
Wu, C.; Zhao, X.; Zhang, X.; et al. Effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and related gene expression. Genet. Mol. Res. 2015, 14, 6387–6394.
- 57.
Mosadegh, M.; Hasanzadeh, S.; Razi, M. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression. Iran. J. Basic. Med. Sci. 2017, 20, 199–208.
- 58.
Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–646.
- 59.
Graziewicz, M.A.; Day, B.J.; Copeland, W.C. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 2002, 30, 2817–2824.
- 60.
Baliutyte, G.; Trumbeckaite, S.; Baniene, R.; et al. Effects of standardized extract of Ginkgo biloba leaves EGb761 on mitochondrial functions: Mechanism (s) of action and dependence on the source of mitochondria and respiratory substrate. J. Bioenerg. Biomemb. 2014, 46, 493–501.
- 61.
Dorta, D.J.; Pigoso, A.A.; Mingatto, F.E.; et al. Antioxidant activity of flavonoids in isolated mitochondria. Phytother. Res. 2008, 22, 1213–1218.