2512002495
  • Open Access
  • Article

Constructing Quantum Soliton States Despite Zero Modes

  • Jarah Evslin 1,2

Revised: 10 Nov 2025 | Accepted: 12 Dec 2025 | Published: 15 Dec 2025

Abstract

In classical Lorentz-invariant field theories, localized soliton solutions necessarily break translation symmetry. In the corresponding quantum field theories, the position is quantized and, if the theory is not compactified, they have continuous spectra. It has long been appreciated that ordinary perturbation theory is not applicable to continuum states. Here we argue that, as the Hamiltonian and momentum operators commute, the soliton ground state can nonetheless be found in perturbation theory if one first imposes that the total momentum vanishes. As an illustration, we find the subleading quantum correction to the ground state of the Sine-Gordon soliton.

Keywords

soliton | zero mode | kink

References 

  • 1.

    Hepp, K. The Classical Limit for Quantum Mechanical Correlation Functions. Commun. Math. Phys. 1974, 35, 265.
    https://doi.org/10.1007/BF01646348.

  • 2.

    Sato, J.; Yumibayashi, T. Quantum-classical correspondence via coherent state in integrable field theory. arXiv 2018,
    arXiv:1811.03186.

  • 3.

    Taylor, J.G. Solitons as Infinite Constituent Bound States. Ann. Phys. 1978, 115, 153. https://doi.org/10.1016/0003-
    4916(78)90179-3.

  • 4.

    Delfino, G.; Selke, W.; Squarcini, A. Vortex mass in the three-dimensional O(2) scalar theory. Phys. Rev. Lett. 2019, 122,
    050602 https://doi.org/10.1103/PhysRevLett.122.050602.

  • 5.

    Davies, D. Quantum Solitons in any Dimension: Derrick’s Theorem v. AQFT. arXiv 2019, arXiv:1907.10616.

  • 6.

    Coleman, S.R. The Quantum Sine-Gordon Equation as the Massive Thirring Model. Phys. Rev. D 1975, 11, 2088.
    https://doi.org/10.1103/PhysRevD.11.2088.

  • 7.

    Mandelstam, S. Soliton Operators for the Quantized Sine-Gordon Equation. Phys. Rev. D 1975, 11, 3026.
    https://doi.org/10.1103/PhysRevD.11.3026.

  • 8.

    Seiberg, N.; Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric
    Yang-Mills theory. Nucl. Phys. B 1994, 426, 19; Erratum in Nucl. Phys. B 1994, 430, 485. https://doi.org/10.1016/0550-
    3213(94)00449-8.

  • 9.

    ’t Hooft, G. Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories. Nucl. Phys. B
    1981, 190, 455. https://doi.org/10.1016/0550-3213(81)90442-9.

  • 10.

    Mandelstam, S. Vortices and Quark Confinement in Nonabelian Gauge Theories. Phys. Rept. 1976, 23, 245.
    https://doi.org/10.1016/0370-1573(76)90043-0.

  • 11.

    Aguirre, A.; Flores-Hidalgo, G. A note on one-loop soliton quantum mass corrections. Mod. Phys. Lett. A 2020, 33, 2050102.
    https://doi.org/10.1142/S0217732320501023.

  • 12.

    Dashen, R.F.; Hasslacher, B.; Neveu, A. Nonperturbative Methods and Extended Hadron Models in Field Theory 2.
    Two-Dimensional Models and Extended Hadrons. Phys. Rev. D 1974, 10, 4130. https://doi.org/10.1103/PhysRevD.10.4130.

  • 13.

    Rajaraman, R. Some Nonperturbative Semiclassical Methods in Quantum Field Theory: A Pedagogical Review. Phys. Rept.
    1975, 21, 227. https://doi.org/10.1016/0370-1573(75)90016-2.

  • 14.

    Goldhaber, A.S.; Rebhan, A.; van Nieuwenhuizen, P.; et al. Quantum corrections to mass and central charge of supersymmetric
    solitons. Phys. Rept. 2004, 398, 179. https://doi.org/10.1016/j.physrep.2004.05.001.

  • 15.

    Rebhan, A.; van Nieuwenhuizen, P. No saturation of the quantum Bogomolnyi bound by two-dimensional supersymmetric
    solitons. Nucl. Phys. B 1997, 508, 449. https://doi.org/10.1016/S0550-3213(97)80021-1.

  • 16.

    Dashen, R.F.; Hasslacher, B.; Neveu, A. Nonperturbative Methods and Extended Hadron Models in Field Theory 1.
    Semiclassical Functional Methods. Phys. Rev. D 1974, 10, 4114. https://doi.org/10.1103/PhysRevD.10.4114.

  • 17.

    Evslin, J. The Ground State of the Sine-Gordon Soliton. arXiv 2020, arXiv:2003.11384.

  • 18.

    Friedrichs, K.O. On the perturbation of continuous spectra. Commun. Pure Appl. Math. 1948, 1, 361–406
    https://doi.org/10.1002/cpa.3160010404.

  • 19.

    Callan Jr., C.G. ; Gross, D.J. Quantum Perturbation Theory of Solitons. Nucl. Phys. B 1975, 93, 29–55
    https://doi.org/10.1016/0550-3213(75)90150-9.

  • 20.

    Coleman, S.R. There are no Goldstone bosons in two-dimensions. Commun. Math. Phys. 1973, 31, 259–264.
    https://doi.org/10.1007/BF01646487.

  • 21.

    Evslin, J. Manifestly Finite Derivation of the Quantum Kink Mass. JHEP 2019, 11, 161.
    https://doi.org/10.1007/JHEP11(2019)161.

  • 22.

    Evslin, J.; Zhang, B. Well-defined quantum soliton masses without supersymmetry. Phys. Rev. D 2020, 101, 065005.
    https://doi.org/10.1103/PhysRevD.101.065005.

  • 23.

    Guo, H.; Evslin, J. Finite derivation of the one-loop sine-Gordon soliton mass. JHEP 2020, 2, 140.
    https://doi.org/10.1007/JHEP02(2020)140.

  • 24.

    Flugge, S. Practical Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1999. https://doi.org/10.1007/978-3-642-
    61995-3.

  • 25.

    Van Hove, L. Energy corrections and persistent perturbation effects in continuous spectra. Physica 1955, 21, 901–923.
    https://doi.org/10.1016/S0031-8914(55)92832-9.

  • 26.

    Van Hove, L. Energy corrections and persistent perturbation effects in continuous spectra. II: The perturbed stationary states.
    Physica 1956, 22, 343–354. https://doi.org/10.1016/S0031-8914(56)80046-3.

  • 27.

    Gervais, J.L.; Sakita, B. Extended Particles in Quantum Field Theories. Phys. Rev. D 1975, 11, 2943.
    https://doi.org/10.1103/PhysRevD.11.2943.

  • 28.

    Stuart, D.M.A. Hamiltonian quantization of solitons in the ϕ41+1 quantum field theory. I. The semiclassical mass shift. arXiv
    2019, arXiv:1904.02588.

  • 29.

    Dashen, R.F.; Hasslacher, B.; Neveu, A. The Particle Spectrum in Model Field Theories from Semiclassical Functional
    Integral Techniques. Phys. Rev. D 1975, 11, 3424. https://doi.org/10.1103/PhysRevD.11.3424.

  • 30.

    Luther, A. Eigenvalue spectrum of interacting massive fermions in one-dimension. Phys. Rev. B 1976, 14, 2153–2159.
    https://doi.org/10.1103/PhysRevB.14.2153.

  • 31.

    de Vega, H. Two-Loop Quantum Corrections to the Soliton Mass in Two-Dimensional Scalar Field Theories. Nucl. Phys. B
    1976, 115, 411–428. https://doi.org/10.1016/0550-3213(76)90497-1.

  • 32.

    Mussardo, G.; Riva, V.; Sotkov, G. Semiclassical scaling functions of sine-Gordon model. Nucl. Phys. B 2004, 699, 545–574.
    https://doi.org/10.1016/j.nuclphysb.2004.08.004.

Share this article:
How to Cite
Evslin, J. Constructing Quantum Soliton States Despite Zero Modes. Journal of Particle Physics and Cosmology 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.