2512002659
  • Open Access
  • Article

Scheme Dependence of the One-Loop Domain Wall Tension

  • Jarah Evslin 1,2,*,   
  • Hui Liu 3

Received: 18 Nov 2025 | Accepted: 26 Dec 2025 | Published: 07 Jan 2026

Abstract

The one-loop tension of the domain wall in the 3+1 dimensional \(\phi^4\) doublewell model was derived long ago using dimensional regularization. The methods used can only be applied to solitons depending on a single dimension. In the past few months, domain wall tensions have been recalculated using spectral methods with Born subtractions and also linearized soliton perturbation theory, both of which may be generalized to arbitrary solitons. It has been shown that the former agrees with the results of Rebhan et al. In the present work, we argue that, if the same renormalization scheme is chosen, both new results agree.

References 

  • 1.

    Dashen, R.F.; Hasslacher, B.; Neveu, A. Nonperturbative methods and extended-hadron models in field theory. II. Twodimensional models and extended hadrons. Phys. Rev. D 1974, 10, 4130. https://doi.org/10.1103/PhysRevD.10.4130.

  • 2.

    Brezin, E.; Feng, S. Amplitude of the surface tension near the critical point. Phys. Rev. B 1984, 29, 472–75. https://doi.org/10.1103/PhysRevB.29.472.

  • 3.

    Munster, G. Tunneling Amplitude and Surface Tension in ϕ4-Theory. Nucl. Phys. B 1989, 324, 630–642. https://doi.org/10.1016/0550-3213(89)90524-5.

  • 4.

    Rebhan, A.; van Nieuwenhuizen, P.; Wimmer, R. One loop surface tensions of (supersymmetric) kink domain walls from dimensional regularization. New J. Phys. 2002, 4, 31. https://doi.org/10.1088/1367-2630/4/1/331.

  • 5.

    de Carvalho, C.A.; Marques, G.C.; da Silva, A.J.; et al. Domain Walls at Finite Temperature. Nucl. Phys. B 1986, 265, 45–64. https://doi.org/10.1016/0550-3213(86)90406-2.

  • 6.

    de Carvalho, C.A.A. Thermal and quantum fluctuations around domain walls. Phys. Rev. D 2002 65, 065021. https://doi.org/10.1103/PhysRevD.65.065021.

  • 7.

    Blanco-Pillado, J.J.; Jim´enez-Aguilar, D.; Urrestilla, J.; Exciting the domain wall soliton. J. Cosmol. Astropart. Phys. 2021, 2021, 027. https://doi.org/10.1088/1475-7516/2021/01/027.

  • 8.

    Blanco-Pillado, J.J.; Jim´enez-Aguilar, D.; Queiruga, J.M.; et al. The dynamics of domain wall strings. J. Cosmol. Astropart. Phys. 2023, 2023, 011. https://doi.org/10.1088/1475-7516/2023/05/011.

  • 9.

    Evslin, J.; Liu, H.; Zhang, B. The domain wall soliton’s tension. Eur. Phys. J. C 2025, 85, 639. https://doi.org/10.1140/epjc/s10052-025-14383-8.

  • 10.

    Graham, N.; Weigel, H. Quantum contribution to domain wall tension from spectral methods. Phys. Rev. D 2025, 112, 045003. https://doi.org/10.1103/9v1m-rwjb.

  • 11.

    Cahill, K.E.; Comtet, A.; Glauber, R.J. Mass Formulas for Static Solitons. Phys. Lett. B 1976, 64, 283–285. https://doi.org/10.1016/0370-2693(76)90202-1.

  • 12.

    Ogundipe, K.; Evslin, J.; Zhang, B.; et al. A (2+1)-dimensional domain wall at one-loop. J. High Energy Phys. 2024, 2024, 98. https://doi.org/10.1007/JHEP05(2024)098.

  • 13.

    Rebhan, A.; van Nieuwenhuizen, P. No saturation of the quantum Bogomolnyi bound by two-dimensional N = 1 supersymmetric solitons. Nucl. Phys. B 1997, 508, 449–467. https://doi.org/10.1016/S0550-3213(97)00625-1.

  • 14.

    Litvintsev, A.; van Nieuwenhuizen, P. Once more on the BPS bound for the SUSY kink. arXiv 2000, arXiv:hep-th/0010051.

  • 15.

    Parnachev, A.; Yaffe, L.G. One loop quantum energy densities of domain wall field configurations. Phys. Rev. D 2000, 62, 105034. https://doi.org/10.1103/PhysRevD.62.105034.

  • 16.

    Zhong, Y. Revisit on two-dimensional self-gravitating kinks: superpotential formalism and linear stability. J. High Energy Phys. 2021, 2021, 118. https://doi.org/10.1007/JHEP04(2021)118.

  • 17.

    Wang, H.; Zhong, Y.; Wang, Z. Rosen-Morse potential and gravitating kinks. Phys. Lett. B 2024, 858, 139071. https://doi.org/10.1016/j.physletb.2024.139071.

Share this article:
How to Cite
Evslin, J.; Liu, H. Scheme Dependence of the One-Loop Domain Wall Tension. Journal of Particle Physics and Cosmology 2026, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.