- 1.
Khan, M.I.; Gilani, R.; Hafeez, J.; et al. Advantages and disadvantages of lithium-ion batteries. In Nanostructured Lithium-ion Battery Materials; Elsevier: Amsterdam, The Netherlands, 2025; pp. 47–64.
- 2.
Kim, T.; Song, W.; Son, D.-Y.; et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964.
- 3.
Wu, J.; Cao, Y.; Zhao, H.; et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 2019, 1, 57–76.
- 4.
Acebedo, B.; Morant-Miñana, M.C.; Gonzalo, E.; et al. Current Status and Future Perspective on Lithium Metal Anode Production Methods. Adv. Energy Mater. 2023, 13, 2203744,
https://doi.org/10.1002/aenm.202203744.
- 5.
Yang, L.; Hagh, N.M.; Macciomei, E.; et al. Challenges and Opportunities in Lithium Metal Battery Technology. J. Electrochem. Soc. 2024, 171, 060504.
- 6.
Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; et al. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.
- 7.
Yerdauletov, M.S.; Nazarov, K.; Mukhametuly, B.; et al. Characterization of activated carbon from rice husk for enhanced energy storage devices. Molecules 2023, 28, 5818.
- 8.
Shaibani, M.; Abedin, M.J.; Sharifzadeh Mirshekarloo, M.; et al. New Class of High-Energy, High-Power Capacitive Devices Enabled by Stabilized Lithium Metal Anodes. ACS Appl. Mater. Interfaces 2023, 15, 37454–37466.
- 9.
Tan, L.; Huang, X.; Yin, T.; et al. A 5 V ultrahigh energy density lithium metal capacitor enabled by the fluorinated electrolyte. Energy Storage Mater. 2024, 71, 103692,
https://doi.org/10.1016/j.ensm.2024.103692.
- 10.
Liu, B.; Chen, J.; Yang, B.; et al. Boosting the performance of lithium metal capacitors with a Li composite anode. J. Mater. Chem. A 2021, 9, 10722–10730.
- 11.
Liu, B.; Chen, J.; Yang, B.; et al. An ultrahigh-energy-density lithium metal capacitor. Energy Storage Mater. 2021, 42, 154–163.
- 12.
Zhong, Q.; Liu, B.; Yang, B.; et al. Flexible lithium metal capacitors enabled by an in situ prepared gel polymer electrolyte. Chin. Chem. Lett. 2021, 32, 3496–3500.
- 13.
Shah, N.; Ling, J.; Misnon, I.I.; et al. A simple formula to fabricate high performance lithium metal capacitors. J. Energy Storage 2025, 105, 114682.
- 14.
- 15.
Vijayan, B.L.; Misnon, I.I.; Anilkumar, G.M.; et al. Void-size-matched hierarchical 3D titania flowers in porous carbon as an electrode for high-density supercapacitive charge storage. J. Alloys Compd. 2021, 858, 157649,
https://doi.org/10.1016/j.jallcom.2020.157649.
- 16.
- 17.
Jiang, T.; Amadei, C.A.; Gou, N.; et al. Toxicity of single-walled carbon nanotubes (SWCNTs): Effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environ. Sci. Nano 2020, 7, 1348–1364.
- 18.
Raphey, V.; Henna, T.; Nivitha, K.; et al. Advanced biomedical applications of carbon nanotube. Mater. Sci. Eng. C 2019, 100, 616–630.
- 19.
Izadi-Najafabadi, A.; Futaba, D.N.; Iijima, S.; et al. Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 18017–18019.
- 20.
Dong, Q.; Nasir, M.Z.M.; Pumera, M. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications. Phys. Chem. Chem. Phys. 2017, 19, 27320–27325.
- 21.
- 22.
Shaker, M.; Ng, S.; Ghazvini, A.A.S.; et al. Carbon/graphene quantum dots as electrolyte additives for batteries and supercapacitors: A review. J. Energy Storage 2024, 85, 111040.
- 23.
Jiang, Z.; Guan, L.; Xu, X.; et al. Applications of carbon dots in electrochemical energy storage. ACS Appl. Electron. Mater. 2022, 4, 5144–5164.
- 24.
Li, S.; Luo, Z.; Tu, H.; et al. N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 2021, 42, 679–686.
- 25.
Arumugam, P.; Elumali, S.R.; Raman, K.; et al. Green Synthesis of Corn Cob Derived Carbon Quantum Dots and Its Applications as Electrolyte Additive for Lithium-Metal Batteries. ECS Trans. 2022, 107, 16547.
- 26.
Yang, S.; Xu, Z.; Wang, S.; et al. Hydrophilic and nanocrystalline carbon quantum dots enable highly reversible zinc-ion batteries. Green Chem. 2024, 26, 7293–7301.
- 27.
Ganesh, G.; Sunil, V.; Ling, J.; et al. Carbon dots as a sustainable electrolyte enhancer in aqueous alkaline electrochemical capacitors. J. Energy Storage 2024, 94, 112465.
- 28.
Sunil, V.; Yasin, A.; Pal, B.; et al. Tailoring the charge storability of commercial activated carbon through surface treatment. J. Energy Storage 2022, 55, 105809.
- 29.
Liu, C.; Wen, M.; Zhou, X.; et al. Starch-Derived Carbon Dots with Enhanced Photoluminescence and Tunable Emission for Multilevel Anticounterfeiting. ACS Sustain. Chem. Eng. 2024, 12, 12354–12364.
- 30.
Luo, H.; Lari, L.; Kim, H.; et al. Structural evolution of carbon dots during low temperature pyrolysis. Nanoscale 2022, 14, 910–918.
- 31.
Kim, K.; Chokradjaroen, C.; Saito, N. Solution plasma: New synthesis method of N-doped carbon dots as ultra-sensitive fluorescence detector for 2, 4, 6-trinitrophenol. Nano Express 2020, 1, 020043.
- 32.
Yu, R.; Liang, S.; Ru, Y.; et al. A facile preparation of multicolor carbon dots. Nanoscale Res. Lett. 2022, 17, 32.
- 33.
Wang, S.; Liu, S.; Zhang, J.; et al. Highly fluorescent nitrogen-doped carbon dots for the determination and the differentiation of the rare earth element ions. Talanta 2019, 198, 501–509.
- 34.
Zulfajri, M.; Gedda, G.; Chang, C.-J.; et al. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega 2019, 4, 15382–15392.
- 35.
Wang, J.; Xiao, L.; Wen, S.; et al. Hierarchically porous SiO 2/C hollow microspheres: A highly efficient adsorbent for Congo Red removal. RSC Adv. 2018, 8, 19852–19860.
- 36.
Zhang, M.; Wang, W.; Liang, X.; et al. Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor. Chin. Chem. Lett. 2021, 32, 2217–2221.
- 37.
Meng, F.; Song, M.; Wei, Y.; et al. The contribution of oxygen-containing functional groups to the gas-phase adsorption of volatile organic compounds with different polarities onto lignin-derived activated carbon fibers. Environ. Sci. Pollut. Res. 2019, 26, 7195–7204.
- 38.
Rezaei, A.; Hadian-Dehkordi, L.; Samadian, H.; et al. Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Sci. Rep. 2021, 11, 4411.
- 39.
Yu, M.; Zhang, S.; Chen, Y.; et al. A green method to reduce graphene oxide with carbonyl groups residual for enhanced electrochemical performance. Carbon 2018, 133, 101–108.
- 40.
Liu, Y.; Zhu, C.; Gao, Y.; et al. Biomass-derived nitrogen self-doped carbon dots via a simple one-pot method: Physicochemical, structural, and luminescence properties. Appl. Surf. Sci. 2020, 510, 145437.
- 41.
Sunil, V.; Salehan, S.S.; Ganesh, G.; et al. Nanoarchitectonics with improved supercapacitive performance of jering-derived porous activated carbon electrodes in aqueous electrolyte. Ionics 2024, 30, 5767–5776.
- 42.
Misnon, I.I.; Zain, N.K.M.; Jose, R. Conversion of oil palm kernel shell biomass to activated carbon for supercapacitor electrode application. Waste Biomass Valorization 2019, 10, 1731–1740.
- 43.
Sahoo, S.; Satpati, A.K.; Sahoo, P.K.; et al. Incorporation of Carbon Quantum Dots for Improvement of Supercapacitor Performance of Nickel Sulfide. ACS Omega 2018, 3, 17936–17946.
https://doi.org/10.1021/acsomega.8b01238.
- 44.
Li, Q.; Chen, J.; Zhang, L. Nickel-cobalt oxide coated CNTs as additives of activated carbon electrode for high-performance supercapacitors. In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August 2013; pp. 348–351.
- 45.
Schopf, D.; Es-Souni, M. Supported porous carbon and carbon–CNT nanocomposites for supercapacitor applications. Appl. Phys. A 2016, 122, 203.
- 46.
Tang, J.; Chen, S.; Jia, Y.; et al. Carbon dots as an additive for improving performance in water-based lubricants for amorphous carbon (aC) coatings. Carbon 2020, 156, 272–281.
- 47.
Kumar, V.B.; Borenstein, A.; Markovsky, B.; et al. Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors. J. Phys. Chem. C 2016, 120, 13406–13413.
- 48.
Zhang, P.; Fan, J.; Wang, Y.; et al. Insights into the role of defects on the Raman spectroscopy of carbon nanotube and biomass-derived carbon. Carbon 2024, 222, 118998.
- 49.
Bläker, C.; Muthmann, J.; Pasel, C.; et al. Characterization of activated carbon adsorbents–state of the art and novel approaches. ChemBioEng Rev. 2019, 6, 119–138.
- 50.
Sunil, V.; Pal, B.; Misnon, I.I.; et al. Characterization of supercapacitive charge storage device using electrochemical impedance spectroscopy. Mater. Today Proc. 2021, 46, 1588–1594.
- 51.
Pal, B.; Yasin, A.; Sunil, V.; et al. Enhancing the materials circularity: From laboratory waste to electrochemical capacitors. Mater. Today Sustain. 2022, 20, 100221.
- 52.
Wang, D.; Qiu, J.; Inui, N.; et al. Between Promise and Practice: A Comparative Look at the Energy Density of Li Metal-Free Batteries and Li Metal Batteries. ACS Energy Lett. 2023, 8, 5248–5252.
https://doi.org/10.1021/acsenergylett.3c02105.
- 53.
An, G.-H.; Kim, H.; Ahn, H.-J. Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage. ACS Appl. Mater. Interfaces 2018, 10, 6235–6244,
https://doi.org/10.1021/acsami.7b15950.
- 54.
Kumar, S.; Goswami, M.; Singh, N.; et al. Exploring carbon quantum dots as an aqueous electrolyte for energy storage devices. J. Energy Storage 2022, 55, 105522.
- 55.
Lindström, H.; Södergren, S.; Solbrand, A.; et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.
- 56.
Jorn-am, T.; Supchocksoonthorn, P.; Pholauyphon, W.; et al. Quasi-solid, bio-renewable supercapacitors based on cassava peel and cassava starch and the use of carbon dots as performance enhancers. Energy Fuels 2022, 36, 7865–7877.
- 57.
Raavi, R.; Archana, S.; Reddy, P.A.; et al. Performances of dual carbon multi-ion supercapacitors in aqueous and non-aqueous electrolytes. Energy Adv. 2023, 2, 385–397.
- 58.
Schoetz, T.; Gordon, L.; Ivanov, S.; et al. Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochim. Acta 2022, 412, 140072.
- 59.
- 60.
Zhang, T.; Fuchs, B.; Secchiaroli, M.; et al. Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts. Electrochim. Acta 2016, 218, 163–173,
https://doi.org/10.1016/j.electacta.2016.09.126.
- 61.
Eleri, O.E.; Lou, F.; Yu, Z. Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode. Batteries 2023, 9, 533.
- 62.
Choi, W.; Shin, H.-C.; Kim, J.M.; et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13
- 63.
Lee, S.P., Ali, G.A.M.; Hegazy, H.H.; et al. Optimizing Reduced Graphene Oxide Aerogel for a Supercapacitor. Energy Fuels 2021, 35, 4559–4569.
- 64.
Jiang, Y.; Li, J.; Jiang, Z.; et al. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon 2021, 175, 281–288.
- 65.
Quan, Y.; Wang, G.; Lu, L.; et al.; High-performance pseudo-capacitor energy storage device based on a hollow-structured copper sulfide nanoflower and carbon quantum dot nanocomposite. Electrochimica Acta 2020, 353, 136606.
- 66.
Yang, P.; Zhu, Z.; Chen, M.; et al. Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Opt.Mater. 2018, 85, 329–336.
- 67.
Zhao, C.; Zhao, Z.; Liang, Y.; et al. Bi/BiOI/carbon quantum dots nano-sheets with superior photocatalysis. RSC Adv. 2023, 13, 30520–30527.
- 68.
Rong, C.; Liao, C.; Chen, Y.; et al. High-performance supercapacitor electrode materials from composite of bamboo tar pitch activated carbon and tannic acid carbon quantum dots. J. Energy Storage 2024, 95, 112657.