- 1.
- 2.
Kojima, A.; Teshima, K.; Shirai, Y.; et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 3.
Feng, J.; Wang, X.; Li, J.; et al. Resonant perovskite solar cells with extended band edge. Nat. Commun. 2023, 14, 5392.
- 4.
Temitmie, Y.A.; Haider, M.I.; Cuzzupè, D.T.; et al. Overcoming the Open-Circuit Voltage Losses in Narrow Bandgap Perovskites for All-Perovskite Tandem Solar Cells. ACS Mater. Lett. 2024, 6, 5190–5198.
- 5.
Chiang, C.H.; Wu, C.G. Bulk heterojunction perovskite–PCBM solar cells with high ffll factor. Nat. Photonics 2016, 10, 196–200.
- 6.
Ergen, O.; Gilbert, S.M.; Pham, T.; et al. Graded bandgap perovskite solar cells. Nat. Mater. 2017, 16, 522–525.
- 7.
Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; et al. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249.
- 8.
Qin, K.; Dong, B.; Wang, S. Improving the stability of metal halide perovskite solar cells from material to structure. J. Energy Chem. 2019, 33, 90–99.
- 9.
Wang, K.; Zheng, L.; Zhu, T.; et al. Efffcient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy 2019, 61, 352–360.
- 10.
Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nature Energy 2016, 1, 1–8.
- 11.
Azhar, M.; Mubeen, M.; Mukhtar, M.; et al. Damping the phase segregation in mixed halide perovskites: Inffuence of X-site anion. Mater. Chem. Phys. 2022, 287, 126335.
- 12.
Tavakoli, M.M.; Yadav, P.; Prochowicz, D.; et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efffcient planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803587.
- 13.
Zhang, W.; Zhang, T.; Qin, L.; et al. Anti-solvent engineering to rapid purify PbI2 for efffcient perovskite solar cells. Chem. Eng. J. 2024, 479, 147838.
- 14.
Zhao, P.; Kim, B.J.; Ren, X.; et al. Antisolvent with an ultrawide processing window for the one-step fabrication of efffcient and large-area perovskite solar cells. Adv. Mater. 2018, 30, 1802763.
- 15.
Jin, S.; Wei, Y.; Huang, F.; et al. Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent. J. Power Sources 2018, 404, 64–72.
- 16.
Subhani, W.S.; Wang, K.; et al. Anti-solvent engineering for efffcient semitransparent CH3NH3PbBr3 perovskite solar cells for greenhouse applications. J. Energy Chem. 2019, 34, 12–19.
- 17.
Taylor, A.D.; Sun, Q.; Goetz, K.P.; et al. A general approach to high-efffciency perovskite solar cells by any antisolvent. Nat. Commun. 2021, 12, 1878.
- 18.
Paek, S.; Schouwink, P.; Athanasopoulou, E.N.; et al. From nano-to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 2017, 29, 3490–3498.
- 19.
Ghosh, S.; Mishra, S.; Singh, T. Antisolvents in perovskite solar cells: Importance, issues, and alternatives. Adv. Mater. Interfaces 2020, 7, 2000950.
- 20.
Cuzzupè, D.T.; O¨ z, S.D.; Ling, J.; et al. Understanding the Methylammonium Chloride-Assisted Crystallization for Improved Performance of Lead-Free Tin Perovskite Solar Cells. Solar RRL 2023, 7, 2300770.
- 21.
Kaczaral, S.C.; Morales, D.A.; Schreiber, S.W.; et al. Improved reproducibility of metal halide perovskite solar cells via automated gas quenching. APL Energy 2023, 1, 036112.
- 22.
Gou, Y.; Tang, S.; Yun, C.; et al. Research progress of green antisolvent for perovskite solar cells. Mater. Horiz. 2024, 11, 3465–3481.
- 23.
Huang, F.; Dkhissi, Y.; Huang, W.; et al. Gas-assisted preparation of lead iodide perovskite fflms consisting of a monolayer of single crystalline grains for high efffciency planar solar cells. Nano Energy 2014, 10, 10–18.
- 24.
Deng, Y.; Van Brackle, C.H.; Dai, X.; et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic fflms. Sci. Adv. 2019, 5, eaax7537.
- 25.
Subbiah, A.S.; Torres Merino, L.V.; Pininti, A.R.; et al. Enhancing the Performance of Blade-Coated Perovskite/Silicon Tandems via Molecular Doping and Interfacial Energy Alignment. ACS Energy Lett. 2024, 9, 727–731.
- 26.
Geistert, K.; Ternes, S.; Ritzer, D.B.; et al. Controlling Thin Film Morphology Formation during Gas Quenching of Slot-Die Coated Perovskite Solar Modules. ACS Appl. Mater. Interfaces 2023, 15, 52519–52529.
- 27.
Ternes, S.; Mohacsi, J.; Lu¨dtke, N.; et al. Drying and coating of perovskite thin fflms: How to control the thin fflm morphology in scalable dynamic coating systems. ACS Appl. Mater. Interfaces 2022, 14, 11300–11312.
- 28.
Xu, K.; Al-Ashouri, A.; Peng, Z.W.; et al. Slot-die coated triple-halide perovskites for efffcient and scalable perovskite/silicon tandem solar cells. ACS Energy Lett. 2022, 7, 3600–3611.
- 29.
LaMer, V.K.; Dinegar, R.H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.
- 30.
Qiu, S.; Majewski, M.; Dong, L.; et al. In Situ Probing the Crystallization Kinetics in Gas-Quenching-Assisted Coating of Perovskite Films. Adv. Energy Mater. 2024, 14, 2303210.
- 31.
Liu, C.; Cheng, Y.B.; Ge, Z. Understanding of perovskite crystal growth and fflm formation in scalable deposition processes. Chem. Soc. Rev. 2020, 49, 1653–1687.
- 32.
Wang, Z.; Duan, X.; Zhang, J.; et al. Manipulating the crystallization kinetics of halide perovskites for large-area solar modules. Commun. Mater. 2024, 5, 131.
- 33.
Song, S.; Ho¨rantner, M.T.; Choi, K.; et al. Inducing swift nucleation morphology control for efffcient planar perovskite solar cells by hot-air quenching. J. Mater. Chem. A 2017, 5, 3812–3818.
- 34.
Kim, M.; Kim, G.H.; Oh, K.S.; et al. High-temperature–short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano 2017, 11, 6057–6064.
- 35.
Zheng, D.; Rafffn, F.; Volovitch, P.; et al. Control of perovskite fflm crystallization and growth direction to target homogeneous monolithic structures. Nat. Commun. 2022, 13, 6655.
- 36.
Chen, S.; Xiao, X.; Chen, B.; et al. Crystallization in one-step solution deposition of perovskite fflms: Upward or downward? Sci. Adv. 2021, 7, eabb2412.
- 37.
Xiao, M.; Huang, F.; Huang, W.; et al. A fast deposition-crystallization procedure for highly efffcient lead iodide perovskite thin-fflm solar cells. Angew. Chem. Int. Ed. 2014, 53, 9898–9903.
- 38.
Jeon, N.J.; Noh, J.H.; Kim, Y.C.; et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.
- 39.
Lee, K.M.; Lin, C.J.; Liou, B.Y.; et al. Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 172, 368–375.
- 40.
Lin, K.F.; Chang, S.H.; Wang, K.H.; et al. Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Sol. Energy Mater. Sol. Cells 2015, 141, 309–314.
- 41.
Ahn, N.; Son, D.Y.; Jang, I.H.; et al. Highly reproducible perovskite solar cells with average efffciency of 18.3% and best efffciency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.
- 42.
Lee, J.W.; Dai, Z.; Lee, C.; et al. Tuning molecular interactions for highly reproducible and efffcient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 2018, 140, 6317–6324.
- 43.
Cohen, B.E.; Aharon, S.; Dymshits, A.; et al. Impact of antisolvent treatment on carrier density in efffcient hole-conductorfree perovskite-based solar cells. J. Phys. Chem. C 2016, 120, 142–147.
- 44.
Etgar, L.; Gao, P.; Xue, Z.; et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.
- 45.
Mei, A.; Li, X.; Liu, L.; et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.
- 46.
Ternes, S.; Laufer, F.; Paetzold, U.W. Modeling and Fundamental Dynamics of Vacuum, Gas, and Antisolvent Quenching for Scalable Perovskite Processes. Adv. Sci. 2024, 11, 2308901.
- 47.
Wołowiec-Korecka, E. Development of Quenching Towards Quality Improvement. In Carburising and Nitriding of Iron Alloys; Springer: Berlin, Germany, 2024; pp. 71–85.
- 48.
Yu, Y.; Zhang, F.; Hou, T.; et al. A Review on Gas-Quenching Technique for Efffcient Perovskite Solar Cells. Solar RRL 2021, 5, 2100386.
- 49.
Fievez, M.; Rana, P.J.S.; Koh, T.M.; et al. Slot-die coated methylammonium-free perovskite solar cells with 18% efffciency. Sol. Energy Mater. Sol. Cells 2021, 230, 111189.
- 50.
Du, M.; Zhu, X.; Wang, L.; et al. High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efffciency. Adv. Mater. 2020, 32, 2004979.
- 51.
Hou, T.; Zhang, M.; Yu, W.; et al. Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. J. Mater. Chem. A 2022, 10, 2105–2112.
- 52.
Conings, B.; Babayigit, A.; Klug, M.T.; et al. A universal deposition protocol for planar heterojunction solar cells with high efffciency based on hybrid lead halide perovskite families. Adv. Materials.-Weinh. 2016, 28, 10701–10709.
- 53.
Babayigit, A.; D’Haen, J.; Boyen, H.G.; et al. Gas quenching for perovskite thin fflm deposition. Joule 2018, 2, 1205–1209.
- 54.
Tang, S.; Bing, J.; Zheng, J.; et al. Complementary bulk and surface passivations for highly efffcient perovskite solar cells by gas quenching. Cell Rep. Phys. Sci. 2021, 2, 100511.
- 55.
Zhang, X.; Eurelings, S.; Bracesco, A.; et al. Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efffcient Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 46803–46811.
- 56.
Wu, Y.; Wu, S.; Wang, J.; et al. Facet orientation control of tin-lead perovskite for efffcient all-perovskite tandem solar cells. J. Mater. Sci. Technol. 2025, 213, 118–124.
- 57.
Heydarian, M.; Heydarian, M.; Bett, A.J.; et al. Monolithic Two-Terminal Perovskite/Perovskite/Silicon Triple-Junction Solar Cells with Open Circuit Voltage >2.8 V. ACS Energy Lett. 2023, 8, 4186–4192.
- 58.
Brinkmann, K.O.; He, J.; Schubert, F.; et al. Extremely robust gas-quenching deposition of halide perovskites on top of hydrophobic hole transport materials for inverted (p–i–n) solar cells by targeting the precursor wetting issue. ACS Appl. Mater. Interfaces 2019, 11, 40172–40179.
- 59.
Szostak, R.; Sanchez, S.; Marchezi, P.E.; et al. Revealing the perovskite fflm formation using the gas quenching method by in situ GIWAXS: Morphology, properties, and device performance. Adv. Funct. Mater. 2021, 31, 2007473.
- 60.
Sun, X.; Yang, X.; Wang, X.; et al. The effect of pyrrolidone-based ligands in gas-quenching fabrication of FA0.9Cs0.1PbI3 perovskite fflms and solar cells. J. Alloys Compd. 2023, 960, 170670.
- 61.
Harnmanasvate, C.; Chanajaree, R.; Rujisamphan, N.; et al. Ambient Gas-Quenching Fabrication of MA-Free Perovskite Solar Cells Enabled by an Eco-Friendly Urea Additive. ACS Appl. Energy Mater. 2023, 6, 10665–10673.
- 62.
Werner, J.; Moot, T.; Gossett, T.A.; et al. Improving low-bandgap tin–lead perovskite solar cells via contact engineering and gas quench processing. ACS Energy Lett. 2020, 5, 1215–1223.
- 63.
Zhang, X.; Qiu, W.; Apergi, S.; et al. Minimizing the Interface-Driven Losses in Inverted Perovskite Solar Cells and Modules. ACS Energy Lett. 2023, 8, 2532–2542.
- 64.
Song, W.; Zhang, X.; Lammar, S.; et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: A Study on the Effects of Volatile A-Cation Additives. ACS Appl. Mater. Interfaces 2022, 14, 27922–27931.
- 65.
O¨ cebe, A.; Deveci, H.; ˙Ismail, C.K. Gas-Quenching Approach for Fabricating Cs2 AgBiBr6 Thin Films in Ambient Environment for Lead-Free All-Inorganic Perovskite Solar Cells with Carbon Electrodes. Energy Technol. 2023, 11, 2300407.
- 66.
O¨ cebe, A.; ˙Ismail, C.K. From particles to fflms: Production of Cs2 AgBiBr6-based perovskite solar cells and enhancement of cell performance via ionic liquid utilization at the TiO2 /perovskite interface. Dalton Trans. 2024, 53, 1253–1264.
- 67.
Zhang, M.; Yun, J.S.; Ma, Q.; et al. High-efffciency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett. 2017, 2, 438–444.
- 68.
Cassella, E.J.; Spooner, E.L.; Smith, J.A.; et al. Binary Solvent System Used to Fabricate Fully Annealing-Free Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2203468.
- 69.
Razza, S.; Di Giacomo, F.; Matteocci, F.; et al. Perovskite solar cells and large area modules (100 cm2) based on an air ffow-assisted PbI2 blade coating deposition process. J. Power Sources 2015, 277, 286–291.
- 70.
Gao, L.L.; Li, C.X.; Li, C.J.; et al. Large-area high-efffciency perovskite solar cells based on perovskite fflms dried by the multi-ffow air knife method in air. J. Mater. Chem. A 2017, 5, 1548–1557.
- 71.
Gao, L.L.; Zhang, K.J.; Chen, N.; et al. Boundary layer tuning induced fast and high performance perovskite fflm precipitation by facile one-step solution engineering. J. Mater. Chem. A 2017, 5, 18120–18127.
- 72.
Cheng, R.; Chung, C.C.; Zhang, H.; et al. An Air Knife–Assisted Recrystallization Method for Ambient-Process Planar Perovskite Solar Cells and Its Dim-Light Harvesting. Small 2019, 15, 1804465.
- 73.
Lee, D.K.; Jeong, D.N.; Ahn, T.K.; et al. Precursor engineering for a large-area perovskite solar cell with >19% efffciency. ACS Energy Lett. 2019, 4, 2393–2401.
- 74.
Dai, X.; Deng, Y.; Van Brackle, C.H.; et al. Scalable fabrication of efffcient perovskite solar modules on ffexible glass substrates. Adv. Energy Mater. 2020, 10, 1903108.
- 75.
Chung, J.; Kim, S.; Li, Y.; et al. Engineering Perovskite Precursor Inks for Scalable Production of High-Efffciency Perovskite Photovoltaic Modules. Adv. Energy Mater. 2023, 13, 2300595.
- 76.
Liang, Q.; Liu, K.; Sun, M.; et al. Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition. Adv. Mater. 2022, 34, 2200276.
- 77.
Yue, W.; Yang, H.; Cai, H.; et al. Printable High-Efffciency and Stable FAPbBr3 Perovskite Solar Cells for Multifunctional Building-Integrated Photovoltaics. Adv. Mater. 2023, 35, 2301548.
- 78.
Jafarzadeh, F.; Castriotta, L.A.; Rossi, F.D.; et al. All-blade-coated ffexible perovskite solar cells & modules processed in air from a sustainable dimethyl sulfoxide (DMSO)-based solvent system. Sustain. Energy Fuels 2023, 7, 2219–2228.
- 79.
Pious, J.K.; Lai, H.; Hu, J.; et al. In Situ Buried Interface Engineering towards Printable Pb–Sn Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 39399–39407.
- 80.
Du, T.; Rehm, V.; Qiu, S.; et al. Precursor-Engineered Volatile Inks Enable Reliable Blade-Coating of Cesium–Formamidinium Perovskites Toward Fully Printed Solar Modules. Adv. Sci. 2024, 11, 2401783.
- 81.
Hou, T.; Zhang, M.; Sun, X.; et al. Methylammonium-Free Ink for Low-Temperature Crystallization of α-FAPbI3 Perovskite. Adv. Energy Mater. 2024, 14, 2400932.
- 82.
Ku¨ffner, J.; Hanisch, J.; Wahl, T.; et al. One-Step Blade Coating of Inverted Double-Cation Perovskite Solar Cells from a Green Precursor Solvent. ACS Appl. Energy Mater. 2021, 4, 11700–11710.
- 83.
Fong, P.W.; Hu, H.; Ren, Z.; et al. Printing High-Efffciency Perovskite Solar Cells in High-Humidity Ambient Environment—An In Situ Guided Investigation. Adv. Sci. 2021, 8, 2003359.
- 84.
Vesce, L.; Stefanelli, M.; Herterich, J.P.; et al. Ambient Air Blade-Coating Fabrication of Stable Triple-Cation Perovskite Solar Modules by Green Solvent Quenching. Solar RRL 2021, 5, 2100073.
- 85.
Vesce, L.; Stefanelli, M.; Rossi, F.; et al. Perovskite solar cell technology scaling-up: Eco-efffcient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating. Prog.Photovolt. Res. Appl. 2024, 32, 115–129.
- 86.
Ding, J.; Han, Q.; Ge, Q.Q.; et al. Fully air-bladed high-efffciency perovskite photovoltaics. Joule 2019, 3, 402–416.
- 87.
Kistler, S.; Scriven, L. Coating ffows. In Computational Analysis of Polymer Processing; Springer: Berlin, Germany, 1983; pp. 243–299.
- 88.
Cotella, G.; Baker, J.; Worsley, D.; et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362–369.
- 89.
Kim, J.E.; Jung, Y.S.; Heo, Y.J.; et al. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 2018, 179, 80–86.
- 90.
Lee, D.; Jung, Y.S.; Heo, Y.J.; et al. Slot-die coated perovskite fflms using mixed lead precursors for highly reproducible and large-area solar cells. ACS Appl. Mater. Interfaces 2018, 10, 16133–16139.
- 91.
Zuo, C.; Vak, D.; Angmo, D.; et al. One-step roll-to-roll air processed high efffciency perovskite solar cells. Nano Energy 2018, 46, 185–192.
- 92.
Duarte, V.C.; Andrade, L. Recent Advancements on Slot-Die Coating of Perovskite Solar Cells: The Lab-to-Fab Optimisation Process. Energies 2024, 17, 3896.
- 93.
Matondo, J.T.; Hu, H.; Ding, Y.; et al. Slot-Die Coating for Scalable Fabrication of Perovskite Solar Cells and Modules. Adv. Mater. Technol. 2024, 9, 2302082.
- 94.
- 95.
Tong, L.; Zhang, A.; Li, Y.; et al. Exergy and energy analysis of a load regulation method of CVO of air separation unit. Appl. Therm. Eng. 2015, 80, 413–423.