- 1.
Im, J.-H.; Lee, C.-R.; Lee, J.-W.; et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.
- 2.
Huang, Z.; Bai, Y.; Huang, X.; et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 2023, 623, 531–537.
- 3.
Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72.
- 4.
Jeon, N.J.; Noh, J.H.; Kim, Y.C.; et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.
- 5.
Yang, M.; Li, Z.; Reese, M.O.; et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2017, 2, 17038.
- 6.
Prasanna, R.; Gold-Parker, A.; Leijtens, T.; et al. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. J. Am. Chem. Soc. 2017, 139, 11117–11124.
- 7.
Egger, D.A.; Kronik, L. Role of Dispersive Interactions in Determining Structural Properties of Organic–Inorganic Halide Perovskites: Insights from First-Principles Calculations. J. Phys. Chem. Lett. 2014, 5, 2728–2733.
- 8.
Zhou, L.; Neukirch, A.J.; Vogel, D.J.; et al. Density of States Broadening in CH3NH3PbI3 Hybrid Perovskites Understood from ab Initio Molecular Dynamics Simulations. ACS Energy Lett. 2018, 3, 787–793.
- 9.
Chen, J.; Kim, S.-G.; Park, N.-G. FA0.88Cs0.12PbI3−(PF6) Interlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability. Adv. Mater. 2018, 30, 1801948.
- 10.
Jeong, J.; Kim, M.; Seo, J.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.
- 11.
Zhang, W.; Saliba, M.; Moore, D.T.; et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142.
- 12.
Huang, S.-H.; Tian, K.-Y.; Huang, H.-C.; et al. Controlling the Morphology and Interface of the Perovskite Layer for Scalable High-Efficiency Solar Cells Fabricated Using Green Solvents and Blade Coating in an Ambient Environment. ACS Appl. Mater. Interfaces 2020, 12, 26041–26049.
- 13.
Li, C.-F.; Huang, H.-C.; Huang, S.-H.; et al. High-Performance Perovskite Solar Cells and Modules Fabricated by SlotDie Coating with Nontoxic Solvents Nanomaterials [Online], 2023.
- 14.
Huang, S.-H.; Guan, C.-K.; Lee, P.-H.; et al. Toward All Slot-Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air. Adv. Energy Mater. 2020, 10, 2001567.
- 15.
Kulkarni, S.A.; Baikie, T.; Boix, P.P.; et al. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2014, 2, 9221–9225.
- 16.
Chen, H. Two-Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application. Adv. Funct. Mater. 2017, 27, 1605654.
- 17.
Ummadisingu, A.; Grätzel, M. Revealing the detailed path of sequential deposition for metal halide perovskite formation. Sci. Adv. 2018, 4, e1701402.
- 18.
Tai, Q.; You, P.; Sang, H.; et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 2016, 7, 11105.
- 19.
Liu, K.; Luo, Y.; Jin, Y.; et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 2022, 13, 4891.
- 20.
Glowienka, D.; Huang, S.-H.; Lee, P.-H.; et al. Understanding the Dominant Physics Mechanisms on the p-i-n Perovskite Solar Cells Fabricated by Scalable Slot-Die Coating Process in Ambient Air. Sol. RRL 2024, 8, 2300791.
- 21.
Wang, H.; Ye, F.; Liang, J.; et al. Pre-annealing treatment for high-efficiency perovskite solar cells via sequential deposition. Joule 2022, 6, 2869–2884.
- 22.
Xu, Q.; Shi, B.; Li, Y.; et al. Diffusible Capping Layer Enabled Homogeneous Crystallization and Component Distribution of Hybrid Sequential Deposited Perovskite. Adv. Mater. 2024, 36, 2308692.
- 23.
Lin, D.; Gao, Y.; Zhang, T.; et al. Vapor Deposited Pure α-FAPbI3 Perovskite Solar Cell via Moisture-Induced Phase Transition Strategy. Adv. Funct. Mater. 2022, 32, 2208392.
- 24.
Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chem. 2013, 52, 9019–9038.
- 25.
Montecucco, R.; Quadrivi, E.; Po, R.; et al. All-Inorganic Cesium-Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules. Adv. Energy Mater. 2021, 11, 2100672.
- 26.
Li, Z.; Yang, M.; Park, J.-S.; et al. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mat. 2016, 28, 284–292.
- 27.
Cheng, Y.; Xu, X.; Xie, Y.; et al. 18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar RRL 2017, 1, 1700097.
- 28.
Yoon, S.J.; Kuno, M.; Kamat, P.V. Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites. ACS Energy Lett. 2017, 2, 1507–1514.
- 29.
Philippe, B.; Park, B.-W.; Lindblad, R.; et al. Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chem. Mat. 2015, 27, 1720–1731.
- 30.
Yu, X.; Qin, Y.; Peng, Q. Probe Decomposition of Methylammonium Lead Iodide Perovskite in N2 and O2 by in Situ Infrared Spectroscopy. J. Phys. Chem. A 2017, 121, 1169–1174.
- 31.
Meng, K.; Wang, X.; Xu, Q.; et al. In Situ Observation of Crystallization Dynamics and Grain Orientation in Sequential Deposition of Metal Halide Perovskites. Adv. Funct. Mater. 2019, 29, 1902319.
- 32.
Węcławik, M.; Gągor, A.; Piecha, A.; et al. Synthesis, crystal structure and phase transitions of a series of imidazolium iodides. CrystEngComm 2013, 15, 5633–5640.
- 33.
Weber, O.J.; Marshall, K.L.; Dyson, L.M.; et al. Structural diversity in hybrid organic–inorganic lead iodide materials. Acta Crystallogr. Sect. B 2015, 71, 668–678.