2505000611
  • Open Access
  • Article
Solution Deposition of High-Quality AgBiS2 Thin-Films via a Binary Diamine-Dithiol Solvent System
  • Mehri Ghasemi 1, 2, *,   
  • Dongxu He 2,   
  • Baohua Jia 1, *,   
  • Xiaoming Wen 1, *

Received: 18 Feb 2025 | Revised: 08 Apr 2025 | Accepted: 10 Apr 2025 | Published: 21 Apr 2025

Abstract

Lead halide perovskites suffer from toxicity and instability challenges due to their sensitivity to various environmental factors, such as humidity, heat and prolonged light illumination. Developing stable and lead-free alternatives that can still be solution-processed has attracted significant research interests in the past years. Bismuth-based chalcogenide materials have emerged as one promising candidate. In particular, silver bismuth disulfide (AgBiS2) has garnered increasing interest due to its high absorption coefficient (105–103 cm−1 in the 400–1100 nm range) and a favourable bandgap of ~1.3 eV. However, the poor solubility of AgBiS2 precursors in the conventional solvents has hindered the solution fabrication of high-quality thin-films. While previous studies have explored deposition techniques such as spray pyrolysis, hot-injection synthesis with ligand exchange, and nanocrystal ink-based in situ passivation, these methods often involve complex ligand engineering, high processing costs, or challenges in achieving uniform and compact thin-film. In this work, we introduce a novel solution-based spin-coating approach for the deposition of high-quality, phase-pure AgBiS2 thin-films, overcoming the solubility limitations of conventional precursors. By employing a binary chelating solvent mixture of ethylenediamine and 1,2-ethanedithiol, we achieve bidentate coordination with metal cations, enabling the dissolution of Ag2S and Bi2S3 through a chelation-assisted mechanism. This facilitates the formation of compact and uniform films with precise roughness control. This method eliminates the need for high-temperature processing or vacuum-assisted crystallization, significantly enhancing scalability and cost-effectiveness. A planar heterojunction device architecture incorporating TiO2 as the electron transport layer (FTO/c-TiO2/AgBiS2/P3HT/Au) is demonstrated with the initial power conversion efficiency (PCE) of 0.62%, offering an effective charge extraction pathway. With further passivation and doping optimizations, this approach presents a new, scalable route for solution-processed AgBiS2 thin-films, providing a promising alternative to ligand-engineered nanocrystal-based methods with potential advantages in stability, reproducibility, and manufacturing compatibility.

Graphical Abstract

References 

  • 1.
    Sharif, R.; Khalid, A.; Ahmad, S.W.; et al. A comprehensive review of the current progresses and material advances in perovskite solar cells. Nanoscale Adv. 2023, 5, 3803–3833. https://doi.org/10.1039/D3NA00319A.
  • 2.
    Cao, F.; Bian, L.; Li, L. Perovskite solar cells with high-efficiency exceeding 25%: A review. Energy Mater. Devices 2024, 2, 9370018. https://doi.org/10.26599/EMD.2024.9370018.
  • 3.
    Azhar, M.; Yalcinkaya, Y.; Cuzzupè, D.T.; et al. Perovskite Thin Films Solar Cells: The Gas Quenching Method. Mater. Sustain. 2025, 1, 5. https://doi.org/10.53941/matsus.2025.100005.
  • 4.
    D’Innocenzo, V.; Grancini, G.; Alcocer, M.J.; et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.
  • 5.
    De Wolf, S.; Holovsky, J.; Moon, S.-J.; et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett 2014, 5, 1035–1039.
  • 6.
    Stranks, S.D.; Eperon, G.E.; Grancini, G.; et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.
  • 7.
    Xing, G.; Mathews, N.; Sun, S.; et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.
  • 8.
    Dong, Q.; Fang, Y.; Shao, Y.; et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.
  • 9.
    Miyata, A.; Mitioglu, A.; Plochocka, P.; et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys 2015, 11, 582.
  • 10.
    Chatterjee, S.; Pal, A.J. Influence of metal substitution on hybrid halide perovskites: Towards lead-free perovskite solar cells. J. Mater. Chem. A 2018, 6, 3793–3823.
  • 11.
    Zhu, H.; Fu, Y.; Meng, F.; et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636.
  • 12.
    Tan, Z.-K.; Moghaddam, R.S.; Lai, M.L.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687.
  • 13.
    Wang, R.; Mujahid, M.; Duan, Y.; et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 2019, 29, 1808843.
  • 14.
    Jeon, N.J.; Noh, J.H.; Yang, W.S.; et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. https://doi.org/10.1038/nature14133.
  • 15.
    Lyu, M.; Yun, J.-H.; Cai, M.; et al. Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016, 9, 692–702.
  • 16.
    Slavney, A.H.; Hu, T.; Lindenberg, A.M.; et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.
  • 17.
    Ghasemi, M.; Hao, M.; Xiao, M.; et al. Lead-free metal-halide double perovskites: From optoelectronic properties to applications. Nanophotonics 2020, 10, 2181–2219. https://doi.org/10.1515/nanoph-2020-0548.
  • 18.
    Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58.
  • 19.
    Billen, P.; Leccisi, E.; Dastidar, S.; et al. Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. Energy 2019, 166, 1089–1096. https://doi.org/10.1016/j.energy.2018.10.141.
  • 20.
    Hao, F.; Stoumpos, C.C.; Guo, P.; et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 11445–11452.
  • 21.
    Fujihara, T.; Terakawa, S.; Matsushima, T.; et al. Fabrication of high coverage MASnI3 perovskite films for stable, planar heterojunction solar cells. J. Mater. Chem. C 2017, 5, 1121–1127.
  • 22.
    Yokoyama, T.; Cao, D.H.; Stoumpos, C.C.; et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett 2016, 7, 776–782.
  • 23.
    Noel, N.K.; Stranks, S.D.; Abate, A.; et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.
  • 24.
    Cui, X.-P.; Jiang, K.-J.; Huang, J.-H.; et al. Cupric bromide hybrid perovskite heterojunction solar cells. Synth. Met. 2015, 209, 247–250.
  • 25.
    Wei, F.; Deng, Z.; Sun, S.; et al. The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA) 2 KBiCl 6 (MA = methylammonium). Mater. Horiz. 2016, 3, 328–332.
  • 26.
    Li, X.; Zhong, X.; Hu, Y.; et al. Organic–Inorganic Copper (II)-Based Material: A Low-Toxic, Highly Stable Light Absorber for Photovoltaic Application. J. Phys. Chem. Lett 2017, 8, 1804–1809.
  • 27.
    Zhu, H.; Pan, M.; Johansson, M.B.; et al. High Photon‐to‐Current Conversion in Solar Cells Based on Light‐Absorbing Silver Bismuth Iodide. ChemSusChem 2017, 10, 2592–2596.
  • 28.
    Eckhardt, K.; Bon, V.; Getzschmann, J.; et al. Crystallographic insights into (CH3NH3)3(Bi2I9): A new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem. Commun. 2016, 52, 3058–3060.
  • 29.
    Fabian, D.M.; Ardo, S. Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication. J. Mater. Chem. A 2016, 4, 6837–6841.
  • 30.
    Hoye, R.L.; Brandt, R.E.; Osherov, A.; et al. Methylammonium bismuth iodide as a lead‐free, stable hybrid organic–inorganic solar absorber. Chem. Eur. J. 2016, 22, 2605–2610.
  • 31.
    Ghasemi, M.; Lyu, M.; Roknuzzaman, M.; et al. Phenethylammonium bismuth halides: From single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications. J. Mater. Chem. A 2019, 7, 20733–20741. https://doi.org/10.1039/C9TA07454F.
  • 32.
    Ghasemi, M.; Zhang, L.; Yun, J.-H.; et al. Dual-Ion-Diffusion Induced Degradation in Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2002342. https://doi.org/10.1002/adfm.202002342.
  • 33.
    Boopathi, K.M.; Karuppuswamy, P.; Singh, A.; et al. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. J. Mater. Chem. A 2017, 5, 20843–20850.
  • 34.
    Saparov, B.; Hong, F.; Sun, J.-P.; et al. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632.
  • 35.
    Harikesh, P.; Mulmudi, H.K.; Ghosh, B.; et al. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater. 2016, 28, 7496–7504.
  • 36.
    Bator, G.; Jakubas, R.; Baran, J.; et al. Infrared studies of structural phase transitions in (NH3CH3)3Sb2I9. Vib. Spectrosc. 1995, 8, 425–433.
  • 37.
    Krishnamoorthy, T.; Ding, H.; Yan, C.; et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015, 3, 23829–23832.
  • 38.
    Stoumpos, C.C.; Frazer, L.; Clark, D.J.; et al. Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 2015, 137, 6804–6819.
  • 39.
    Lu, X.; Zhao, Z.; Li, K.; et al. First-principles insight into the photoelectronic properties of Ge-based perovskites. RSC Adv. 2016, 6, 86976–86981.
  • 40.
    Lakshmi, V.; Chen, Y.; Mikhaylov, A.A.; et al. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275.
  • 41.
    Gao, M.-R.; Xu, Y.-F.; Jiang, J.; et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017.
  • 42.
    Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal 2016, 6, 8069–8097.
  • 43.
    Chatti, M.; Gengenbach, T.; King, R.; et al. Vertically aligned interlayer expanded MoS2 nanosheets on a carbon support for hydrogen evolution electrocatalysis. Chem. Mater. 2017, 29, 3092–3099.
  • 44.
    Chung, I.; Kanatzidis, M.G. Metal chalcogenides: A rich source of nonlinear optical materials. Chem. Mater. 2013, 26, 849–869.
  • 45.
    Fan, F.-J.; Wu, L.; Yu, S.-H. Energetic I–III–VI 2 and I 2–II–IV–VI 4 nanocrystals: Synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 2014, 7, 190–208.
  • 46.
    Carey, G.H.; Abdelhady, A.L.; Ning, Z.; et al. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.
  • 47.
    Panthani, M.G.; Kurley, J.M.; Crisp, R.W.; et al. High efficiency solution processed sintered CdTe nanocrystal solar cells: The role of interfaces. Nano Lett. 2014, 14, 670–675.
  • 48.
    Chen, G.; Seo, J.; Yang, C.; et al. Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 2013, 42, 8304–8338.
  • 49.
    Aldakov, D.; Lefrançois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756–3776.
  • 50.
    Yan, C.; Gu, E.; Liu, F.; et al. Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals. Nanoscale 2013, 5, 1789–1792.
  • 51.
    Guin, S.N.; Biswas, K. Cation disorder and bond anharmonicity optimize the thermoelectric properties in kinetically stabilized rocksalt AgBiS2 nanocrystals. Chem. Mater. 2013, 25, 3225–3231.
  • 52.
    Chen, C.; Qiu, X.; Ji, S.; et al. The synthesis of monodispersed AgBiS 2 quantum dots with a giant dielectric constant. CrystEngComm 2013, 15, 7644–7648.
  • 53.
    Pejova, B.; Nesheva, D.; Aneva, Z.; et al. Photoconductivity and relaxation dynamics in sonochemically synthesized assemblies of AgBiS2 quantum dots. J. Phys. Chem. C 2010, 115, 37–46.
  • 54.
    Bernechea, M.; Miller, N.C.; Xercavins, G.; et al. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521.
  • 55.
    Oh, J.T.; Wang, Y.; Rodà, C.; et al. Post-deposition in situ passivation of AgBiS2 nanocrystal inks for high-efficiency ultra-thin solar cells. Energy Environ. Sci. 2024, 17, 8885–8892.
  • 56.
    Nakazawa, T.; Kim, D.; Oshima, Y.; et al. Synthesis and Application of AgBiS2 and Ag2S Nanoinks for the Production of IR Photodetectors. ACS Omega 2021, 6, 20710–20718. https://doi.org/10.1021/acsomega.1c03463.
  • 57.
    Ajiboye, T.O.; Mafolasire, A.A.; Lawrence, S.; et al. Composite and Pristine Silver Bismuth Sulphide: Synthesis and Up-to-Date Applications. J. Inorg. Organomet. Polym. Mater. 2024, 34, 433–457. https://doi.org/10.1007/s10904-023-02838-y.
  • 58.
    Guan, W.; Zhou, W.; Lu, J.; et al. Luminescent films for chemo-and biosensing. Chem. Soc. Rev. 2015, 44, 6981–7009.
  • 59.
    Kim, D.; Jeong, Y.; Song, K.; et al. Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 2009, 25, 11149–11154.
  • 60.
    Meyers, S.T.; Anderson, J.T.; Hung, C.M.; et al. Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 2008, 130, 17603–17609.
  • 61.
    Mitzi, D.B.; Yuan, M.; Liu, W.; et al. A high‐efficiency solution‐deposited thin‐film photovoltaic device. Adv. Mater. 2008, 20, 3657–3662.
  • 62.
    Bob, B.; Lei, B.; Chung, C.H.; et al. The Development of Hydrazine‐Processed Cu (In, Ga)(Se, S)2 Solar Cells. Adv. Energy Mater. 2012, 2, 504–522.
  • 63.
    Wang, R.Y.; Caldwell, M.A.; Jeyasingh, R.G.D.; et al. Electronic and optical switching of solution-phase deposited SnSe2 phase change memory material. J. Appl. Phys. 2011, 109, 113506.
  • 64.
    Milliron, D.J.; Raoux, S.; Shelby, R.M.; et al. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Nat. Mater. 2007, 6, 352.
  • 65.
    Webber, D.H.; Brutchey, R.L. Alkahest for V2VI3 chalcogenides: Dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J. Am. Chem. Soc. 2013, 135, 15722–15725.
  • 66.
    Banerjee, S.; Szarko, J.M.; Yuhas, B.D.; et al. Room temperature light emission from the low-dimensional semiconductors AZrPS6 (A = K, Rb, Cs). J. Am. Chem. Soc. 2010, 132, 5348–5350.
  • 67.
    Norian, K.; Chern, G.; Lauks, I. Morphology and thermal properties of solvent‐cast arsenic sulfide films. J. Appl. Phys. 1984, 55, 3795–3798.
  • 68.
    Bera, T.K.; Jang, J.I.; Song, J.-H.; et al. Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined experimental and theoretical study. J. Am. Chem. Soc. 2010, 132, 3484–3495.
  • 69.
    Mitzi, D.B. Solution processing of chalcogenide semiconductors via dimensional reduction. Adv. Mater. 2009, 21, 3141–3158.
  • 70.
    Yuan, M.; Mitzi, D.B. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films. Dalton Trans. 2009, 31, 6078–6088.
  • 71.
    Guo, Q.; Ford, G.M.; Yang, W.-C.; et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386.
  • 72.
    Wang, W.; Gao, C.; Chen, Y.; et al. Cubic AgBiS2 Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes. Micromachines 2023, 14, 2211.
  • 73.
    Sugarthi, S.; Bakiyaraj, G.; Abinaya, R.; et al. Effect of different growth temperature on the formation of ternary metal chalcogenides AgBiS2. Mater. Sci. Semicond. Process. 2020, 107, 104781.
  • 74.
    Yao, F.; Jiang, L.; Qi, Y.; et al. Chemical bath deposition of AgBiS2 films for visible and X-ray detection. Appl. Mater. Today 2022, 26, 101262.
  • 75.
    Pai, N.; Lu, J.; Senevirathna, D.C.; et al. Spray deposition of AgBiS2 and Cu3 BiS3 thin films for photovoltaic applications. J. Mater. Chem. C 2018, 6, 2483–2494.
  • 76.
    Cappel, U.B.; Daeneke, T.; Bach, U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. Nano Lett. 2012, 12, 4925–4931.
Share this article:
How to Cite
Ghasemi, M.; He, D.; Jia, B.; Wen, X. Solution Deposition of High-Quality AgBiS2 Thin-Films via a Binary Diamine-Dithiol Solvent System. Materials and Sustainability 2025, 1 (2), 8. https://doi.org/10.53941/matsus.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.