- 1.
Han, P.; Zhang, Y. Recent Advances in Carbazole-Based Self-Assembled Monolayer for Solution-Processed Optoelectronic Devices. Mater.2024, 36, 2405630. https://doi.org/10.1002/adma.202405630.
- 2.
Li, W.; Martínez-Ferrero, E.; Palomares, E. Self-Assembled Molecules as Selective Contacts for Efficient and Stable Perovskite Solar Cells. Chem. Front.2023, 8, 681–699. https://doi.org/10.1039/d3qm01017a.
- 3.
Suo, J.; Yang, B.; Bogachuk, D.; et al. The Dual Use of SAM Molecules for Efficient and Stable Perovskite Solar Cells. Energy Mater.2025, 15, 2400205. https://doi.org/10.1002/aenm.202400205.
- 4.
Al-Ashouri, A.; Köhnen, E.; Li, B.; et al. Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction. Science2020, 370, 1300–1309. https://doi.org/10.1126/science.abd4016.
- 5.
Puerto Galvis, C.E.; González Ruiz, D.A.; Martínez-Ferrero, E.; et al. Challenges in the Design and Synthesis of Self-Assembling Molecules as Selective Contacts in Perovskite Solar Cells. Sci.2023, 15, 1534–1556. https://doi.org/10.1039/d3sc04668k.
- 6.
Wang, X.; Li, J.; Guo, R.; et al. Regulating Phase Homogeneity by Self-Assembled Molecules for Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells. Photonics2024, 18, 1269–1275. https://doi.org/10.1038/s41566-024-01531-x.
- 7.
Lin, J.Y.; Hsu, F.C.; Chang, C.Y.; et al. Self-Assembled Polar Hole-Transport Monolayer for High-Performance Perovskite Photodetectors. Mater. Chem. C2021, 9, 5190–5197. https://doi.org/10.1039/d1tc00433f.
- 8.
Sasaki, Y.; Minami, T. Organic Field-Effect Transistors for Interfacial Chemistry: Monitoring Reactions on SAMs at the Solid-Liquid Interface. ACS Appl. Mater. Interfaces2025, 17, 31165–31173. https://doi.org/10.1021/acsami.5c00297.
- 9.
Zheng, H.; Zhang, F.; Zhou, N.; et al. Self-Assembled Monolayer-Modified ITO for Efficient Organic Light-Emitting Diodes: The Impact of Different Self-Assemble Monolayers on Interfacial and Electroluminescent Properties. Electron.2018, 56, 89–95. https://doi.org/10.1016/j.orgel.2018.01.038.
- 10.
Li, L.; Luo, Y.; Wu, Q.; et al. Efficient and Bright Green InP Quantum Dot Light-Emitting Diodes Enabled by a Self-Assembled Dipole Interface Monolayer. Nanoscale2023, 15, 2837–2842. https://doi.org/10.1039/d2nr06618a.
- 11.
Shin, Y.S.; Ameen, S.; Oleiki, E.; et al. A Multifunctional Self-Assembled Monolayer for Highly Luminescent Pure-Blue Quasi-2D Perovskite Light-Emitting Diodes. Opt. Mater.2022, 10, 2201313. https://doi.org/10.1002/adom.202201313.
- 12.
Chen, B.; Guo, R.; He, Z.; et al. Self-Assembled Monolayers as Hole Transport Layers for Efficient Thermally Evaporated Blue Perovskite Light-Emitting Diodes. Eng. J.2023, 476, 146476. https://doi.org/10.1016/j.cej.2023.146476.
- 13.
Gkeka, D.; Hamilton, I.; Stavridis, T.; et al. Tuning Hole-Injection in Organic-Light Emitting Diodes with Self-Assembled Monolayers. ACS Appl. Mater. Interfaces2024, 16, 39728–39736. https://doi.org/10.1021/acsami.4c08088.
- 14.
Lin, J.Y.; Hsu, F.C.; Chao, Y.C.; et al. Self-Assembled Monolayer for Low-Power-Consumption, Long-Term-Stability, and High-Efficiency Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces2023, 15, 25744–25751. https://doi.org/10.1021/acsami.3c01566.
- 15.
Li, Z.; Chen, Z.; Shi, Z.; et al. Charge Injection Engineering at Organic/Inorganic Heterointerfaces for High-Efficiency and Fast-Response Perovskite Light-Emitting Diodes. Commun.2023, 14, 6441. https://doi.org/10.1038/s41467-023-41929-9.
- 16.
Kumari, S.; Imran, M.; Aktas, E.; et al. Self-Assembled Molecules as Selective Contacts in CsPbBr3 Nanocrystal Light Emitting Diodes. Mater. Chem. C2023, 11, 3788–3795. https://doi.org/10.1039/D2TC03536G.
- 17.
Kumar, K.; Karmakar, A.; Thakur, D.; et al. Self-Assembled Molecular Network with Waterwheel-like Architecture: Experimental and Theoretical Evaluation toward Electron Transport Capabilities for Optoelectronic Devices. Chem. Chem. Phys.2024, 26, 11922–11932. https://doi.org/10.1039/d4cp00390j.
- 18.
Giovannitti, A.; Nielsen, C.B.; Sbircea, D.T.; et al. N-Type Organic Electrochemical Transistors with Stability in Water. Commun.2016, 7, 13066. https://doi.org/10.1038/ncomms13066.
- 19.
Lee, G.S.; Oh, J.G.; Suh, E.H.; et al. Naphthalene-Diimide-Based Small Molecule Containing a Thienothiophene Linker for n-Type Organic Field-Effect Transistors. Res.2022, 30, 470–476. https://doi.org/10.1007/s13233-022-0054-4.
- 20.
Li, L.; Wu, Y.; Li, E.; et al. Self-Assembled Naphthalimide Derivatives as an Efficient and Low-Cost Electron Extraction Layer for n-i-p Perovskite Solar Cells. Commun.2019, 55, 13239–13242. https://doi.org/10.1039/c9cc06345e.
- 21.
Liao, Q.; Kang, Q.; Yang, Y.; et al. Highly Stable Organic Solar Cells Based on an Ultraviolet-Resistant Cathode Interfacial Layer. CCS Chem.2022, 4, 938–948. https://doi.org/10.31635/ccschem.021.202100852.
- 22.
Rozanski, L.J.; Castaldelli, E.; Sam, F.L.M.; Met al. Solution Processed Naphthalene Diimide Derivative as Electron Transport Layers for Enhanced Brightness and Efficient Polymer Light Emitting Diodes. Mater. Chem. C 2013, 1, 3347–3352. https://doi.org/10.1039/c3tc30175c.
- 23.
Jameel, M.A.; Yang, T.C.J.; Wilson, G.J.; et al. Naphthalene Diimide-Based Electron Transport Materials for Perovskite Solar Cells. Mater. Chem. A2021, 9, 27170–27192. https://doi.org/10.1039/d1ta08424k.
- 24.
Cho, I.; Kim, G.Y.; Kim, S.; et al. Naphthalene Diimide-Modified SnO2 Enabling Low-Temperature Processing for Efficient ITO-Free Flexible Perovskite Solar Cells. Small2024, 20, 2402425. https://doi.org/10.1002/smll.202402425.
- 25.
Jang, E.; Jang, H. Review: Quantum Dot Light-Emitting Diodes. Rev.2023, 123, 4663–4692. https://doi.org/10.1021/acs.chemrev.2c00695.
- 26.
Li, L.; Pandey, A.; Werder, D.J.; et al. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. Am. Chem. Soc.2011, 133, 1176–1179. https://doi.org/10.1021/ja108261h.
- 27.
Mandal, G.; Darragh, M.; Wang, Y.A.; et al. Cadmium-Free Quantum Dots as Time-Gated Bioimaging Probes in Highly-Autofluorescent Human Breast Cancer Cells. Commun.2013, 49, 624–626. https://doi.org/10.1039/c2cc37529j.
- 28.
Hoppe, C.E.; Williams, R.J.J. Tailoring the Self-Assembly of Linear Alkyl Chains for the Design of Advanced Materials with Technological Applications. Colloid Interface Sci.2018, 513, 911–922. https://doi.org/10.1016/j.jcis.2017.10.048.
- 29.
Mashford, B.S.; Stevenson, M.; Popovic, Z.; et al. High-Efficiency Quantum-Dot Light-Emitting Devices with Enhanced Charge Injection. Photonics2013, 7, 407–412. https://doi.org/10.1038/nphoton.2013.70.
- 30.
Kim, S.K.; Yang, H.; Kim, Y.S. Control of Carrier Injection and Transport in Quantum Dot Light Emitting Diodes (QLEDs) via Modulating Schottky Injection Barrier and Carrier Mobility. Appl. Phys.2019, 126, 185702. https://doi.org/10.1063/1.5123670.
- 31.
Li, D.; Bai, J.; Zhang, T.; et al. Blue Quantum Dot Light-Emitting Diodes with High Luminance by Improving the Charge Transfer Balance. Commun.2019, 55, 3501–3504. https://doi.org/10.1039/C9CC00230H.
- 32.
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.