- 1.
Yadav, C.S.; Azad, I.; Khan, A.R.; et al. Carbon allotropes: Past to present aspects. In Biosensors Based on Graphene, Graphene Oxide and Graphynes for Early Detection of Cancer; CRC Press: Boca Raton, FL, USA, 2025; pp. 1–23.
- 2.
Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859.
- 3.
Sabina-Delgado, A.; Kamaraj, S.K.; Hernández-Montoya, V.; et al. Novel carbon-ceramic composite membranes with high cation exchange properties for use in microbial fuel cell and electricity generation. Int J Hydrogen Energy 2023, 48, 25512–25526.
- 4.
Kang, J.; Yang, X.; Hu, Q.; et al. Recent progress of amorphous nanomaterials. Chem. Rev. 2023, 123, 8859–8941.
- 5.
Duan, X.; Tian, W.; Zhang, H.; et al. sp2/sp3 framework from diamond nanocrystals: A key bridge of carbonaceous structure to carbocatalysis. ACS Catal. 2019, 9, 7494–7519.
- 6.
Ike, S.; Vander Wal, R. Effect of carbonization methods on graphitization of soft and hard carbons. Carbon Trends 2024, 16, 100382. https://doi.org/10.1016/j.cartre.2024.100382.
- 7.
Pozio, A.; Di Carli, M.; Aurora, A.; et al. Hard Carbons for Use as Electrodes in Li-S and Li-ion Batteries. Nanomaterials 2022, 12, 1349. https://doi.org/10.3390/nano12081349.
- 8.
Ren, X.; Hussain, M.I.; Chang, Y.; et al. State-of-the-Art review on amorphous carbon nanotubes: Synthesis, structure, and application. Int. J. Mol. Sci. 2023, 24, 17239.
- 9.
Tejasvi, R. Properties of Carbon-Based Nanomaterials and Techniques for Characterization. In Carbon-Based Nanomaterials for Green Applications; Wiley: Hoboken, NJ, USA, 2024; pp. 21–55.
- 10.
Ugwumadu, C.; Olson, R. III; Smith, N.L.; et al. Computer simulation of carbonization and graphitization of coal. Nanotechnology 2023, 35, 095703.
- 11.
Ouzilleau, P.; Gheribi, A.; Chartrand, P. The graphitization temperature threshold analyzed through a second-order structural transformation. Carbon 2016, 109, 896–908.
- 12.
Goswami, A.D.; Trivedi, D.H.; Jadhav, N.L.; et al. Sustainable and green synthesis of carbon nanomaterials: A review. J. Environ. Chem. Eng. 2021, 9, 106118.
- 13.
Tu, J.; Wang, X.; Jiang, L.; et al. Efficient graphitization conversion strategies of low-value carbonaceous resources into advanced graphitic carbons. Chem. Eng. J. 2025, 505, 159472.
- 14.
Aswathappa, S.; Dhas, S.S.; Kumar, R.S. Acoustic shock wave-induced sp2-to-sp3-type phase transition-part II: Evidence of the presence of diamond from valance band spectra and electronic diffraction pattern. Diam. Relat. Mater. 2024, 150, 111680.
- 15.
Chen, C.; Xie, L. Graphene and Graphdiyne. In Carbon Catalysis; CRC Press: Boca Raton, FL, USA, 2024; pp. 149–214.
- 16.
Sheka, E.F.; Golubev, Y.A.; Popova, N.A. Amorphous state of sp2 solid carbon. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 107–113.
- 17.
Basit, M.A.; Zafar, R.; Haider, N. Properties of Diamond-like Carbon Coatings. Appl. Diam.-Like Carbon Coat. 2025, 4, 71–106.
- 18.
Tripathi, N.; Sharma, P.; Pavelyev, V.; et al. A detailed study on carbon nanotubes: Properties, synthesis, and characterization. In Chemically Modified Carbon Nanotubes for Commercial Applications; Wiley: Hoboken, NJ, USA, 2023; pp. 1–49.
- 19.
Reyes-Rodríguez, J.L.; Sathish-Kumar, K.; Solorza-Feria, O. Synthesis and functionalization of green carbon as a Pt catalyst support for the oxygen reduction reaction. Int J Hydrogen Energy 2015, 40, 17253–17263.
- 20.
Diaz, J.; Monteiro, O.R.; Hussain, Z.; Structure of amorphous carbon from near-edge and extended X-ray absorption spectroscopy. Phys. Rev. B. 2007, 76, 94201. https://doi.org/10.1103/PhysRevB.76.094201.
- 21.
Phua, E.J.; Kai, T.Y.; Woon, L.Y.; et al. Ultra-Thin ta-C Hermetic Seals for Electronics Packaging. In Proceedings of the 2024 IEEE 26th Electronics Packaging Technology Conference (EPTC), Singapore, 3–6 December 2024; pp. 828–835.
- 22.
Shunin, Y.; Bellucci, S.; Gruodis, A.; et al. General Approach to the Description of Fundamental Properties of Disordered Nanosized Media. In Nonregular Nanosystems: Theory and Applications; Springer International Publishing: Cham, Switzerland, 2017; pp. 7–31.
- 23.
Odusanya, A.; Rahaman, I.; Sarkar, P.K.; et al. Laser-Assisted Growth of Carbon-Based Materials by Chemical Vapor Deposition. C 2022, 8, 24.
- 24.
Li, J.; Yin, D.; Qin, Y. Carbon materials: Structures, properties, synthesis and applications. Manuf. Rev. 2023, 10, 13.
- 25.
Obadero, A.S. Intercalation in Graphite Materials. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2020.
- 26.
Yang, P.J.; Li, T.H.; Li, H.; et al. Progress in the graphitization and applications of modified resin carbons. New Carbon Mater. 2023, 38, 96–108.
- 27.
Cao, D.; Wang, L.; Ding, Z.; et al. Characterization of the heterogeneous evolution of the nanostructure of coal-based graphite. J. Nanosci. Nanotechnol. 2021, 21, 670–681.
- 28.
Hunter, R.D.; Ramírez-Rico, J.; Schnepp, Z. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 2022, 10, 4489–4516.
- 29.
Sun, J.; Dang, Y.; Sun, X.; et al. Can carbon be used as an anode for water splitting? ChemSusChem 2025, 18, e202401340.
- 30.
Ghosh, S.; Zaid, M.; Dutta, J.; et al. Soft carbon in non-aqueous rechargeable batteries: A review of its synthesis, carbonization mechanism, characterization, and multifarious applications. Energy Adv. 2024, 3, 1167–1195. https://doi.org/10.1039/D4YA00174E.
- 31.
Presser, V.; Heon, M.; Gogotsi, Y. Carbide-derived carbons–from porous networks to nanotubes and graphene. Adv. Funct. Mater. 2011, 21, 810–833.
- 32.
Bhattacharyya, S. Carbon Superstructures: From Quantum Transport to Quantum Computation; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–326.
- 33.
Yuan, G.; Li, B.; Li, X.; et al. Effect of Liquid Crystalline Texture of Mesophase Pitches on the Structure and Property of Large-Diameter Carbon Fibers. ACS Omega 2019, 4, 1095–1102. https://doi.org/10.1021/acsomega.8b03189.
- 34.
Li, H.; Li, X.; Wei, J.; et al. Crystalline transformation from ta-C to graphene induced by a catalytic Ni layer during annealing. Diam. Relat. Mater. 2020, 101, 107556.
- 35.
Loh, G.C.; Baillargeat, D. Graphitization of amorphous carbon and its transformation pathways. J. Appl. Phys. 2013, 114, 033534.
- 36.
Zhao, Y.; Zhao, C.; Wang, X.; et al. Stability of sp Hybridized Amorphous Carbon and its Transformation to Nanodiamond. Small Methods 2025, 9, 2500294.
- 37.
Konicek, A.R.; Grierson, D.S.; Gilbert, P.U.P.A.; et al. Origin of Ultralow Friction and Wear in Ultrananocrystalline Diamond. Phys. Rev. Lett. 2008, 100, 235502.
- 38.
Thapa, R.; Ugwumadu, C.; Nepal, K.; et al. Ab Initio Simulation of Amorphous Graphite. Phys. Rev. Lett. 2022, 128, 236402.
- 39.
Gomez-Martin, A.; Schnepp, Z.; Ramirez-Rico, J. Structural Evolution in Iron-Catalyzed Graphitization of Hard Carbons. Chem. Mater. 2021, 33, 3087–3097.
- 40.
Kupka, K.; Leino, A.; Ren, W.; et al. Graphitization of Amorphous Carbon by Swift Heavy Ion Impacts: Molecular Dynamics Simulation. Diam. Relat. Mater. 2018, 83, 134–140.
- 41.
Li, K.; Zhang, H.; Li, G.; et al. ReaxFF Molecular Dynamics Simulation for the Graphitization of Amorphous Carbon: A Parametric Study. J. Chem. Theory Comput. 2018, 14, 2322–2331.
- 42.
Liu, Y.; Gao, T.; Xiao, Q.; et al. Generalized modeling of carbon film deposition growth via hybrid MD/MC simulations with machine-learning potentials. NPJ Comput. Mater. 2025, 11, 285.
- 43.
Amini, S.; Abbaschian, R. Nucleation and growth kinetics of graphene layers from a molten phase. Carbon 2013, 51, 110–123. https://doi.org/10.1016/j.carbon.2012.08.019.
- 44.
Boubiche, N.; El Hamouchi, J.; Hulik, J.; et al. Kinetics of Graphitization of thin diamond-like carbon (DLC) films catalyzed by transition metal. Diam. Relat. Mater. 2019, 91, 190–198.
- 45.
Rigollet, S.; Weiss-Hortala, E.; Flamant, G.; et al. Biocarbon graphenization processes and energy assessment. A Rev. Chem. Eng. J. 2024, 496, 153795. https://doi.org/10.1016/j.cej.2024.153795.
- 46.
Thambiliyagodage, C.J.; Ulrich, S.; Araujo, P.T.; et al. Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 2018, 134, 452–463.
- 47.
Abdullah, N.R.; Rashid, H.O.; Tang, C.S.; et al. Controlling physical properties of bilayer graphene by stacking orientation caused by interaction between B and N dopant atoms. Mater. Sci. Eng. B 2022, 276, 115554.
- 48.
Liu, C.; Fang, W.; Cheng, Q.; et al. Revolutionizing elastomer technology: Advances in reversible crosslinking, reprocessing, and self-healing applications. Polym. Rev. 2025, 65, 483–526.
- 49.
Wang, M.X. Nitrogen and oxygen bridged calixaromatics: Synthesis, structure, functionalization, and molecular recognition. Acc. Chem. Res. 2012, 45, 182–195.
- 50.
McLean, B.; Webber, G.; Page, A. Boron Nitride Nucleation Mechanism during Chemical Vapor Deposition. J. Phys. Chem. C 2018, 122, 24341–24349. https://doi.org/10.1021/acs.jpcc.8b05785.
- 51.
Fan, X.; Dong, X.; Wei, W.H.; et al. Monitoring single-heteroatom loss during deoxygenation and denitrogenation of soluble organic matter in coal using mass spectrometric methods. Fuel 2021, 292, 120294.
- 52.
Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767.
- 53.
McKee, D.W. Oxidation protection of carbon materials. In Chemistry & Physics of Carbon; Boca Raton, FL, USA, 2021; pp. 173–232.
- 54.
Li, S.; Liu, J.; Chen, Y.; et al. Graphitization Induction Effect of Hard Carbon for Sodium-Ion Storage. Adv. Funct. Mater. 2025, 35, 2424629.
- 55.
Devi, M.; Wang, H.; Moon, S.; et al. Laser-Carbonization–A powerful tool for micro-fabrication of patterned electronic carbons. Adv. Mater. 2023, 35, 2211054.
- 56.
Inagaki, M.; Kaburagi, Y.; Hishiyama, Y. Thermal management material: Graphite. Adv. Eng. Mater. 2014, 16, 494–506.
- 57.
Ren, K.; Liu, Z.; Wei, T.; et al. Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 2021, 13, 129.
- 58.
Goronzy, D.P.; Ebrahimi, M.; Rosei, F.; et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445–7481.
- 59.
Izatt, R.M.; Izatt, S.R.; Izatt, N.E.; et al. Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chem. 2015, 17, 2236–2245.
- 60.
Xu, R.; Du, L.; Adekoya, D.; et al. Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 2021, 11, 2001537.
- 61.
Li, X.Y.; Zhang, Z.H.; Cheng, X.W.; et al. The development and application of spark plasma sintering technique in advanced metal structure materials: A review. Powder Metall. Met. Ceram. 2021, 60, 410–438.
- 62.
Zhu, W.; Zhu, L. Argon-assisted electrical explosion of graphite powder in a constraint tube: Experimental and MD insights into the exfoliation mechanism. Ceram. Int. 2025, 51, 21689–21701.
- 63.
Taqy, S.; Haque, A. Radiation-induced synthesis of carbon nanostructures. In Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications; Springer International Publishing: Cham, Switzerland, 2024; pp. 729–788.
- 64.
Sathish-Kumar, K.; Vázquez-Huerta, G.; Rodríguez-Castellanos, A.; et al. Microwave Assisted Synthesis and Characterizations of Decorated Activated Carbon. Int. J. Electrochem. Sci. 2012, 7, 5484–5494.
- 65.
Krasheninnikov, A.V.; Banhart, F.J. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 2007, 6, 723–733.
- 66.
Schwenke, A.M.; Hoeppener, S.; Schubert, U.S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater. 2015, 27, 4113–4141.
- 67.
Ramasundaram, S.; Jeevanandham, S.; Vijay, N.; et al. Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy. Molecules 2024, 29, 4411.
- 68.
Nakamura, Y.; Yoshino, T.; Satish-Kumar, M. Pressure dependence of graphitization: Implications for rapid recrystallization of carbonaceous material in a subduction zone. Contrib. Mineral. Petrol. 2020, 175, 32.
- 69.
Mishra, S.; Datta, R. Embrittlement of Steel. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., et al., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 2761–2768.
- 70.
Mostafavi, E.; Iravani, S.; Varma, R.S.; et al. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. Mater. Adv. 2022, 3, 4765–4782.
- 71.
Choi, G.B.; Ahn, J.-R.; Kim, J.; et al. Unraveling the Catalytic Graphitization Mechanism of Ni–P Electroless Plated Cokes via In Situ Analytical Approaches. ACS Omega 2024, 9, 6741–6748.
- 72.
Kuzovkov, V.; Kotomin, E.; Vila, R. Theoretical analysis of thermal annealing kinetics of radiation defects in silica. J. Nucl. Mater. 2023, 579, 154381. https://doi.org/10.1016/j.jnucmat.2023.154381.
- 73.
Xu, X.; Cao, D.; Wei, Y.; et al. Impact of Graphitization Degree on the Electrochemical and Thermal Properties of Coal. ACS Omega 2024, 9, 2443–2456. https://doi.org/10.1021/acsomega.3c06871.
- 74.
Yan, Q.; Xin, Y.; Zhang, X.; et al. Effect of graphitization temperature on microstructure, mechanical and ablative properties of C/C composites with pitch and pyrocarbon dual-matrix. Ceram. Int. 2022, 49, 2860–2870. https://doi.org/10.1016/j.ceramint.2022.09.269.
- 75.
Chen, C.; Sun, K.; Wang, A.; et al. Catalytic graphitization of cellulose using nickel as catalyst. BioResources 2018, 13, 3165–3176.
- 76.
Jeon, C.; Hwang, S.; Han, M.; et al. Unveiling the graphitization behaviors of highly stiff and thermally conductive graphitic carbon fibers. Carbon 2025, 245, 120791.
- 77.
Shokrani Havigh, R.; Mahmoudi Chenari, H. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Sci. Rep. 2022, 12, 10704. https://doi.org/10.1038/s41598-022-15085-x.
- 78.
Clarke, A.P. Catalytic Methane Chemistry in High-Temperature Molten Environments. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2021.
- 79.
Pusarapu, V.; Narayana Sarma, R.; Ochonma, P.; et al. Sustainable co-production of porous graphitic carbon and synthesis gas from biomass resources. NPJ Mater. Sustain. 2024, 2, 16. https://doi.org/10.1038/s44296-024-00020-0.
- 80.
Lower, L.; Dey, S.; Vook, T.; et al. Catalytic Graphitization of Biocarbon for Lithium-Ion Anodes: A Minireview. ChemSusChem 2023, 16, e202300729.
- 81.
Liu, P.; Du, W.; Liu, X.; et al. Sustainable catalytic graphitization of biomass to graphitic porous carbon by constructing permeation network with organic ligands. Chin. J. Chem. Eng. 2023, 64, 259–270. https://doi.org/10.1016/j.cjche.2023.06.025.
- 82.
Shi, M.; Song, C.; Tai, Z.; et al. Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode material for lithium-ion batteries. Fuel 2021, 292, 120250. https://doi.org/10.1016/j.fuel.2021.120250.
- 83.
Tung, T.T.; Pereira, A.L.C.; Poloni, E.; et al. Irradiation methods for engineering of graphene related two-dimensional materials. Appl. Phys. Rev. 2023, 10, 031309. https://doi.org/10.1063/5.0148376.
- 84.
Frankenstein, L.; Glomb, P.; Ramirez-Rico, J.; et al. Revealing the Impact of Different Iron-Based Precursors on the ‘Catalytic’ Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries. ChemElectroChem 2023, 10, e202201073.
- 85.
Shang, T.; Zhan, H.; Gong, Q.; et al. Insights into the thermal and electric field distribution and the structural optimization in the graphitization furnace. Energy 2024, 297, 131269.
- 86.
Acedera, R. How Does Graphitization Affect the Structure and Properties of Carbon Fiber Papers? 2023. Available online: https://blog.caplinq.com/how-does-graphitization-affect-the-structure-and-properties-of-carbon-fiber-papers_4869/ (accessed on 14 September 2025).
- 87.
Yoshihiro, N.; Takashi, Y.; Sathish, M. An experimental kinetic study on the structural evolution of natural carbonaceous material to graphite. Am. Mineral. 2017, 102, 135–148
- 88.
Zhang, G.; Wen, M.; Wang, S.; et al. Insights into thermal reduction of the oxidized graphite from the electro-oxidation processing of nuclear graphite matrix. RSC Adv. 2018, 8, 567–579. https://doi.org/10.1039/C7RA11578D.
- 89.
Marin, D.; Marchesan, S. Carbon Graphitization: Towards Greener Alternatives to Develop Nanomaterials for Targeted Drug Delivery. Biomedicines 2022, 10, 1320. https://doi.org/10.3390/biomedicines10061320.
- 90.
Li, J.; Cheng, T.; Wu, H.; et al. CO2-assisted synthesis of graphitic resin-based activated carbon for ultrahigh selective adsorption of VOCs under humid conditions. Fuel 2023, 353, 129157. https://doi.org/10.1016/j.fuel.2023.129157.
- 91.
Islam, F.; Tahmasebi, A.; Wang, R.; et al. Structure of Coal-Derived Metal-Supported Few-Layer Graphene Composite Materials Synthesized Using a Microwave-Assisted Catalytic Graphitization Process. Nanomaterials 2021, 11, 1672. https://doi.org/10.3390/nano11071672.
- 92.
Shi, Z.; Wang, Y.; Lu, M.; et al. Catalytic graphitization of engineered pyrolysis bio-oil for sustainable graphite and hydrogen Co-production. Renew. Energy 2026, 256, 124149. https://doi.org/10.1016/j.renene.2025.124149.
- 93.
Chen, X.; Deng, X.; Kim, N.Y.; et al. Graphitization of graphene oxide films under pressure. Carbon 2018, 132, 294–303.
- 94.
Gentile, M.; Bellani, S.; Zappia, M.I.; et al. Hydrogen-Assisted Thermal Treatment of Electrode Materials for Electrochemical Double-Layer Capacitors. ACS Appl. Mater. Interfaces 2024, 16, 13706–13718. https://doi.org/10.1021/acsami.3c18629.
- 95.
Zhao, J.G.; Li, F.Y.; Jin, C.Q. Graphitization of activated carbon under high pressures and high temperatures. Solid State Commun. 2009, 149, 818–821. https://doi.org/10.1016/j.ssc.2008.12.027.
- 96.
Oluwole, O.S.; Jovanović; P; Mohonta, S.C.; et al. Low-temperature graphitization by amine-assisted combustion of graphite oxide. NPJ 2d Mater. Appl. 2025, 9, 52. https://doi.org/10.1038/s41699-025-00572-2.
- 97.
Padwal, C.; Wang, X.; Pham, H.D.; et al. Efficient and swift heating technique for crafting highly graphitized carbon and crystalline silicon (Si@GC) composite anodes for lithium-ion batteries. Battery Energy 2024, 3, 20240025. https://doi.org/10.1002/bte2.20240025.
- 98.
Lazareva, I.; Koval, Y.; Alam, M.; et al. Graphitization of polymer surfaces by low-energy ion irradiation. Appl. Phys. Lett. 2007, 90, 262108. https://doi.org/10.1063/1.2752738.
- 99.
Antonelou, A.; Sygellou, L.; Vrettos, K.; et al. Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 2018, 139, 492–499. https://doi.org/10.1016/j.carbon.2018.07.012.
- 100.
Claro, P.I.C.; Pinheiro, T.; Silvestre, S.L.; et al. Sustainable carbon sources for green laser-induced graphene: A perspective on fundamental principles, applications, and challenges. Appl. Phys. Rev. 2022, 9, 041305. https://doi.org/10.1063/5.0100785.
- 101.
Baghel, P.; Sakhiya, A.K.; Kaushal, P. Ultrafast growth of carbon nanotubes using microwave irradiation: Characterization and its potential applications. Heliyon 2022, 8, e10943. https://doi.org/10.1016/j.heliyon.2022.e10943.
- 102.
Jones, L.; Goffin, N.; Ouyang, J.; et al. Laser specific energy consumption: How do laser systems compare to other manufacturing processes? J. Laser Appl. 2022, 34, 42029. https://doi.org/10.2351/7.0000790.
- 103.
Olejnik, A.; Polaczek, K.; Szkodo, M.; et al. Laser-Induced Graphitization of Polydopamine on Titania Nanotubes. ACS Appl. Mater. Interfaces 2023, 15, 52921–52938. https://doi.org/10.1021/acsami.3c11580.
- 104.
Kim, J.; Son, S.; Choe, M.; et al. In situ TEM investigation of nickel catalytic graphitization. Mater. Today Adv. 2024, 22, 100494. https://doi.org/10.1016/j.mtadv.2024.100494.
- 105.
Shyam Kumar, C.N.; Chakravadhanula, V.S.K.; Riaz, A.; et al. Understanding Graphitization and Growth of free-standing Nanocrystalline Graphene using In Situ Transmission Electron Microscopy. Nanoscale 2017, 9, 12835–12842. https://doi.org/10.1039/C7NR03276E.
- 106.
Zhang, F.; Liu, W. Recent progress of operando transmission electron microscopy in heterogeneous catalysis. Microstructures 2024, 4, 202404. https://doi.org/10.20517/microstructures.2024.03.
- 107.
Schito, A.; Muirhead, D.K.; Parnell, J. Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth-Sci. Rev. 2023, 237, 104292. https://doi.org/10.1016/j.earscirev.2022.104292.
- 108.
Gao, Y.; Zou, C.; She, Y.; et al. Analysis of Structural Heterogeneity in Low-Rank Coal and Its Pyrolyzed Char Using Multi-Point Scanning Micro-Raman Spectroscopy. Molecules 2024, 29, 2361. https://doi.org/10.3390/molecules29102361.
- 109.
Zerda, T.; Gruber, T. Raman Study of Kinetics of Graphitization of Carbon Blacks. Rubber Chem. Technol. 2000, 73, 284–292. https://doi.org/10.5254/1.3547591.
- 110.
Huali, W.; Ruchi, G.; Allen, C.; et al. Comparative Analysis of Microstructure and Reactive Sites for Nuclear Graphite IG-110 and Graphite Matrix A3. J. Nucl. Mater. 2020, 528, 151802.
- 111.
Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; et al. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. https://doi.org/10.1016/j.nexus.2022.100118.
- 112.
Kim, T.; Lee, J.; Lee, K.-H. Full graphitization of amorphous carbon by microwave heating. RSC Adv. 2016, 6, 24667–24674. https://doi.org/10.1039/C6RA01989G.
- 113.
Islam, F.; Wang, J.; Tahmasebi, A.; et al. Microwave-Assisted Coal-Derived Few-Layer Graphene as an Anode Material for Lithium-Ion Batteries. Materials 2021, 14, 6468. https://doi.org/10.3390/ma14216468.
- 114.
Liang, C.; Chen, Y.; Wu, M.; et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 2021, 12, 119. https://doi.org/10.1038/s41467-020-20380-0.
- 115.
Shi, Z.; Wang, S.; Jin, Y.; et al. Establishment of green graphite industry: Graphite from biomass and its various applications. SusMat 2023, 3, 402–415. https://doi.org/10.1002/sus2.139.
- 116.
Sruthy, S.; Grimm, A.; Paul, M.; et al. Low-temperature Highly Graphitized Porous Biomass-based Carbon as an Efficient and Stable Electrode for Lithium-ion Batteries and Supercapacitors. Chem. Eng. J. Adv. 2025, 22, 100762. https://doi.org/10.1016/j.ceja.2025.100762.
- 117.
Zhao, H.; Wu, H.; Rong, T.; et al. Green and efficient graphitization of biomass waste empowered by molten salt electrolysis: Mechanistic exploration and energy storage applications dual-driven by experiments and simulations. J. Mater. Chem. A 2025, 13, 3777–3790. https://doi.org/10.1039/D4TA07890J.
- 118.
Li, K.; Liu, Q.; Cheng, H.; et al. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119286.
- 119.
Pardanaud, C.; Cartry, G.; Lajaunie, L.; et al. Investigating the possible origin of Raman bands in defective sp2/sp3 carbons below 900 cm−1: Phonon density of states or double resonance mechanism at play? C 2019, 5, 79.
- 120.
Li, G.; Zhang, H.; Han, Y. Applications of transmission electron microscopy in phase engineering of nanomaterials. Chem. Rev. 2023, 123, 10728–10749.
- 121.
Su, Y.F.; Park, J.G.; Koo, A.; et al. Characterization at atomic resolution of carbon nanotube/resin interface in nanocomposites by mapping sp2-bonding states using electron energy-loss spectroscopy. Microsc. Microanal. 2016, 22, 666–672.
- 122.
Vander Wal, R.L.; Bryg, V.M.; Hays, M.D. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state. Anal. Chem. 2011, 83, 1924–1930.
- 123.
Seki, S.; Paitandi, R.P.; Choi, W.; et al. Electron transport over 2D molecular materials and assemblies. Acc. Chem. Res. 2024, 57, 2665–2677.
- 124.
Munir, K.S.; Wen, C. Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—A review. Crit. Rev. Solid State Mater. Sci. 2016, 41, 347–366.
- 125.
Mennani, M.; Ait Benhamou, A.; Mekkaoui, A.A.; et al. Probing the evolution in catalytic graphitization of biomass-based materials for enduring energetic applications. J. Mater. Chem. A 2024, 12, 6797–6825.
- 126.
Li, N.; Li, X.; Wang, T.; et al. In situ transmission electron microscopy characterization and manipulation of the morphology, composition and phase evolution of nanomaterials under microenvironmental conditions. Chem. Sci. 2025, 16, 9604–9637.
- 127.
Li, J.; Qin, Y.; Chen, Y.; et al. Structural characteristics and evolution of meta-anthracite to coaly graphite: A quantitative investigation using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy. Fuel 2023, 333, 126334.
- 128.
Xue, B.; Ye, J.; Zhang, J. Highly conductive Poly (L-lactic acid) composites obtained via in situ expansion of graphite. J. Polym. Res. 2015, 22, 112.
- 129.
Shi, Z.; Jin, Y.; Han, T.; et al. Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: The deployment of hybrid catalysts. Sci. Rep. 2024, 14, 3966. https://doi.org/10.1038/s41598-024-54509-8.
- 130.
Guan, L.; Li, D.; Ji, S.; et al. Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering. Materials 2025, 18, 456. https://doi.org/10.3390/ma18020456.
- 131.
Hao, J.; Li, J.; Shi, X.; et al. Changes in microstructure and mechanical properties of the carbon fiber and their effects on C/SiC composites. Mater. Charact. 2022, 193, 112334. https://doi.org/10.1016/j.matchar.2022.112334.
- 132.
Gao, Z.; Zhu, J.; Rajabpour, S.; et al. Graphene reinforced carbon fibers. Sci. Adv. 2025, 6, eaaz4191. https://doi.org/10.1126/sciadv.aaz4191.
- 133.
Li, R.; Hu, J.; Li, Y.; et al. Graphene-Based, Flexible, Wearable Piezoresistive Sensors with High Sensitivity for Tiny Pressure Detection. Sensors 2025, 25, 423. https://doi.org/10.3390/s25020423.
- 134.
Rzeźniczak, P.; Skrzetuska, E.; Venkataraman, M.; et al. Influence of the Ozonation Process on Expanded Graphite for Textile Gas Sensors. Sensors 2025, 25, 5328. https://doi.org/10.3390/s25175328.
- 135.
Roselin, L.S.; Juang, R.S.; Hsieh, C.T.; et al. Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials 2019, 12, 1229.
- 136.
Ávila Vázquez, V.; Enciso Hernández, E.A.; Kamaraj, S.K.; et al. Use of activated carbon and camphor carbon as cathode and clay cup as proton exchange membrane in a microbial fuel cell for the bioenergy production from crude glycerol biodegradation. J. Environ. Sci. Health Part A 2022, 57, 947–957.
- 137.
Wang, G.; Yu, M.; Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.
- 138.
He, J.; Zhang, D.; Wang, Y.; et al. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability. Appl. Surf. Sci. 2020, 515, 146020.
- 139.
Xia, Y.; Yang, Z.; Zhu, Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges. J. Mater. Chem. A 2013, 1, 9365–9381.
- 140.
Liu, J.; Huang, L.; Wang, H.; et al. The origin, characterization, and precise design and regulation of diverse hard carbon structures for targeted applications in lithium-/sodium-/potassium-ion batteries. Electrochem. Energy Rev. 2024, 7, 34.
- 141.
Shao, Y.; Hourdin, L.; Sanchez, J.-Y.; et al. Fluorinated materials in electrochemical storage and conversion devices: assessment of advantages and disadvantages. C. R. Chimie 2025, 28, 523–541.
- 142.
Hecht, D.S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.
- 143.
Xu, J.; Wang, Y.; Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors: A review. Microchim. Acta 2017, 184, 1–44.
- 144.
Raagulan, K.; Kim, B.M.; Chai, K.Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 2020, 10, 702.
- 145.
Fredj, Z.; Sawan, M. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. Biosensors 2023, 13, 211.
- 146.
Ma, Z.; Wang, W.; Xiong, Y.; et al. Carbon Micro/Nano Machining toward Miniaturized Device: Structural Engineering, Large-Scale Fabrication, and Performance Optimization. Small 2024, 21, 2400179.
- 147.
Sayam, A.; Rahman, A.M.; Rahman, M.S.; et al. A review on carbon fiber-reinforced hierarchical composites: Mechanical performance, manufacturing process, structural applications and allied challenges. Carbon Lett. 2022, 32, 1173–1205.
- 148.
Ouyang, J.H.; Li, Y.F.; Zhang, Y.Z.; et al. High-temperature solid lubricants and self-lubricating composites: A critical review. Lubricants 2022, 10, 177.
- 149.
Hassan, S.; Nadeem, A.Y.; Qaiser, H.; et al. A review of carbon-based materials and their coating techniques for biomedical implants applications. Carbon Lett. 2023, 33, 1171–1188.
- 150.
Liu, Y.; Yang, J.; Wang, M.; et al. Recent developments in interface engineering strategies for stabilizing sodium metal anodes. Cell Rep. Phys. Sci. 2024, 5.
- 151.
Zhou, X.; Qiao, J.; Yang, L.; et al. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.
- 152.
Gopinath, K.P.; Vo, D.V.; Gnana Prakash, D.; et al. Environmental applications of carbon-based materials: A review. Environ. Chem. Lett. 2021, 19, 557–582.
- 153.
Li, P.; Galek, P.; Grothe, J.; et al. Carbon-based iontronics–current state and future perspectives. Chem. Sci. 2025, 16, 7130–7154.
- 154.
Alfieri, A.; Anantharaman, S.B.; Zhang, H.; et al. Nanomaterials for quantum information science and engineering. Adv. Mater. 2023, 35, 2109621.
- 155.
Speranza, G. The role of functionalization in the applications of carbon materials: An overview. C 2019, 5, 84.
- 156.
Sharma, S.; Basu, S.; Shetti, N.P.; et al. Versatile graphitized carbon nanofibers in energy applications. ACS Sustain. Chem. Eng. 2022, 10, 1334–1360.
- 157.
Sikder, S.; Toha, M.; Rahman, M.M. Environmental Sustainability and Future Challenges of Waste-Derived Carbon Nanomaterials. In Waste Derived Carbon Nanomaterials; American Chemical Society: Washington, DC, USA, 2025; Volume 1, pp. 309–330.
- 158.
Zhou, T.; Wu, X.; Liu, S.; et al. Biomass-derived catalytically active carbon materials for the air electrode of Zn-air batteries. ChemSusChem 2024, 17, e202301779.
- 159.
Osman, A.I.; Nasr, M.; Mohamed, A.R.; et al. Life cycle assessment of hydrogen production, storage, and utilization toward sustainability. Wiley Interdiscip. Rev. Energy Environ. 2024, 13, e526.
- 160.
Majumder, A.; Ray, B.C. Energy Efficiency and Sustainability. In Sinter Plants: Evolution, Challenges, and Future Perspectives; Springer Nature: Singapore, 2025; pp. 135–169