- 1.
Green, M.A.; Dunlop, E.D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 2024, 32, 425–441.
- 2.
Xu, J. USTC Set New Record in Perovskite Cell Efficiency. 2023. Available online: https://en.ustc.edu.cn/info/1007/4929.htm (accessed on 16 September 2024).
- 3.
LONGI. LONGi Sets New World-Record for Silicon Solar Cell Efficiency, Launching 2nd Generation Ultra-Efficient BC-Based Module. 2024. Available online: https://www.longi.com/en/news/longi-hi-mo9-bc-world-record/ (accessed on 8 May 2024).
- 4.
Liu, Z.; Ono, L.K.; Qi, Y. Additives in metal halide perovskite films and their applications in solar cells. J. Energy Chem. 2020, 46, 215–228.
- 5.
Li, H.; Wu, G.; Li, W.; et al. Additive Engineering to Grow Micron-Sized Grains for Stable High Efficiency Perovskite Solar Cells. Adv. Sci. 2019, 6, 1901241.
- 6.
Chen, J.; Kim, S.G.; Ren, X.; et al. Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. J. Mater. Chem. A Mater. 2019, 7, 4977–4987.
- 7.
Liu, C.; Tu, J.; Hu, X.; et al. Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Adv. Funct. Mater. 2019, 29, 1808059.
- 8.
Yang, I.S.; Park, N. Dual Additive for Simultaneous Improvement of Photovoltaic Performance and Stability of Perovskite Solar Cell. Adv. Funct. Mater. 2021, 31, 2100396.
- 9.
Si, H.; Liao, Q.; Kang, Z.; et al. Deciphering the NH4PbI3 Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite. Adv. Funct. Mater. 2017, 27, 1701804.
- 10.
Li, T.; Pan, Y.; Wang, Z.; et al. Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A Mater. 2017, 5, 12602–12652.
- 11.
Patil, S.V.; Dave, S.; Bhargava, K. Comparative Analysis of MAPbI3 and FAPbI3 based Perovskite Solar Cells: A Numerical Evaluation. In Proceedings of 28th National Conference on Condensed Matter Physics: Condensed Matter Days 2020 (CMDAYS20); Springer: Singapore, 2021; pp. 177–185.
- 12.
Zheng, Z.; Wang, S.; Hu, Y.; et al. Development of formamidinium lead iodide-based perovskite solar cells: Efficiency and stability. Chem. Sci. 2022, 13, 2167–2183.
- 13.
Cui, X.; Jin, J.; Tai, Q.; et al. Recent Progress on the Phase Stabilization of FAPbI3 for High-Performance Perovskite Solar Cells. Solar RRL 2022, 6, 2200497.
- 14.
Hu, H.; Singh, M.; Wan, X.; et al. Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A Mater. 2020, 8, 1578–1603.
- 15.
Bi, D.; Yi, C.; Luo, J.; et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142.
- 16.
Zhao, J.; Li, Z.; Wang, M.; et al. Exploring the film growth in perovskite solar cells. J. Mater. Chem. A Mater. 2021, 9, 6029–6049.
- 17.
Liu, C.; Cheng, Y.B.; Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 2020, 49, 1653–1687.
- 18.
Ke, L.; Ding, L. Perovskite crystallization. J. Semicond. 2021, 42, 080203.
- 19.
Yang, Y.; Xue, Z.; Chen, L.; et al. Large-area perovskite films for PV applications: A perspective from nucleation and crystallization. J. Energy Chem. 2021, 59, 626–641.
- 20.
Wang, Z.; Zhu, Z.; Jin, J.; et al. Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chem. Eng. J. 2022, 442, 136267.
- 21.
Ma, Y.; Liu, N.; Zai, H.; et al. Amidinium additives for high-performance perovskite solar cells. J. Mater. Chem. A Mater. 2022, 10, 3506–3512.
- 22.
Shi, X.; Chen, J.; Wu, Y.; et al. Efficient Formamidinium-Based Planar Perovskite Solar Cells Fabricated Through a CaI2–PbI2 Precursor. ACS Sustain. Chem. Eng. 2020, 8, 4267–4275.
- 23.
Cao, Y.; Yan, N.; Wang, M.; et al. Designed Additive to Regulated Crystallization for High Performance Perovskite Solar Cell. Angew. Chem. Int. Ed. 2024, 63, e202404401.
- 24.
Wang, X.; Sun, W.; Tu, Y.; et al. Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%. Chem. Eng. J. 2022, 446, 137416.
- 25.
Wang, H.; Zhang, Z.; Wang, X.; et al. Phenyltrimethylammonium chloride additive for highly efficient and stable FAPbI3 perovskite solar cells. Nano Energy 2024, 123, 109423.
- 26.
Wang, M.; Li, L.; Wang, J.; et al. Accelerating direct formation of α-FAPbl3 by dual-additives synergism for inverted perovskite solar cells with efficiency exceeding 26%. Chem. Eng. J. 2025, 505, 159056.
- 27.
Yin, Y.; Zhang, S.; Zhou, L.; et al. Combining in-situ formed PbI2 passivation and secondary passivation for highly efficient and stable planar heterojunction perovskite solar cells. Org. Electron. 2022, 100, 106361.
- 28.
Yang, J.A.; Xiao, A.; Xie, L.; et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta 2020, 338, 135697.
- 29.
Gao, Y.; Raza, H.; Zhang, Z.; et al. Rethinking the Role of Excess/Residual Lead Iodide in Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2215171.
- 30.
Zhao, Y.; Ma, F.; Qu, Z.; et al. Inactive (PbI2)2 RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534.
- 31.
Luo, S.; Cao, S.; Zheng, T.; et al. Melamine holding PbI 2 with three “arms”: An effective chelation strategy to control the lead iodide to perovskite conversion for inverted perovskite solar cells. Energy Environ. Sci. 2025, 18, 2436–2451.
- 32.
Wang, Y.; Cheng, Y.; Yin, C.; et al. Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives. Nanomicro Lett. 2024, 16, 183.
- 33.
Dailey, M.; Li, Y.; Printz, A.D. Residual Film Stresses in Perovskite Solar Cells: Origins, Effects, and Mitigation Strategies. ACS Omega 2021, 6, 30214–30223.
- 34.
Rolston, N.; Bush, K.A.; Printz, A.D.; et al. Engineering Stress in Perovskite Solar Cells to Improve Stability. Adv. Energy Mater. 2018, 8, 1802139.
- 35.
Hu, S.; Duan, C.; Du, H.; et al. A stress relaxation strategy for preparing high-quality organic–inorganic perovskite thin films via a vapor–solid reaction. J. Mater. Chem. A Mater. 2023, 11, 23387–23396.
- 36.
Zuo, G.; Zhu, P.; Zeng, J.; et al. Modulating Internal Residual Stress for Efficient and Durable Flexible Perovskite Solar Cells. Solar RRL 2025, 9, 2500052.
- 37.
Sun, Q.; Tuo, B.; Ren, Z.; et al. A Thiourea Competitive Crystallization Strategy for FA-Based Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2208885.
- 38.
Li, M.; Zhou, J.; Tan, L.; et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation 2022, 3, 100310.
- 39.
Fang, Z.; Yan, N.; Liu, S. Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives. InfoMat 2022, 4, e12369.
- 40.
Li, B.; Shen, T.; Yun, S. Recent progress of crystal orientation engineering in halide perovskite photovoltaics. Mater. Horiz. 2023, 10, 13–40.
- 41.
Xu, Z.; Gong, Y.; Wang, J.; et al. Carbon nanofibers fabricated via electrospinning to guide crystalline orientation for stable perovskite solar cells with efficiency over 24%. Chem. Eng. J. 2023, 453, 139961.
- 42.
Li, M.; Sun, R.; Chang, J.; et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 2023, 14, 573.
- 43.
Wu, Y.; Wang, Q.; Chen, Y.; et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 2022, 15, 4700–4709.
- 44.
Kim, G.; Min, H.; Lee, K.S.; et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.
- 45.
Zhou, T.; Xu, Z.; Wang, R.; et al. Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability. Adv. Mater. 2022, 34, 2200705.
- 46.
Zhong, H.; Liu, X.; Liu, M.; et al. Suppressing the crystallographic disorders induced by excess PbI2 to achieve trade-off between efficiency and stability for PbI2-rich perovskite solar cells. Nano Energy 2023, 105, 108014.
- 47.
Li, Q.; Li, D.; Li, Z.; et al. Tailoring Crystal Growth Regulation and Dual Passivation for Air-Processed Efficient Perovskite Solar Cells. Adv. Sci. 2025, 12, 2407401.
- 48.
Zhu, H.; Zhang, F.; Xiao, Y.; et al. Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A Mater. 2018, 6, 4971–4980.
- 49.
Liu, P.; Chen, Y.; Xiang, H.; et al. Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH3NH3PbI3-Based Perovskite Solar Cell with Efficiency Beyond 21%. Small 2021, 17, 2102186.
- 50.
Shi, X.; Wu, Y.; Chen, J.; et al. Thermally stable perovskite solar cells with efficiency over 21% via a bifunctional additive. J. Mater. Chem. A Mater. 2020, 8, 7205–7213.
- 51.
Lee, J.W.; Kim, H.S.; Park, N.G. Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 311–319.
- 52.
Xu, C.; Zhang, Z.; Zhang, S.; et al. Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives. Adv. Funct. Mater. 2021, 31, 2009425.
- 53.
Cao, X.; Li, C.; Li, Y.; et al. Enhanced performance of perovskite solar cells by modulating the Lewis acid–base reaction. Nanoscale 2016, 8, 19804–19810.
- 54.
Zhu, X.; Lin, R.; Gu, H.; et al. Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI3-Based Inverted Perovskite Solar Cells. Energy Environ. Mater. 2023, 6, e12426.
- 55.
Tao, J.; Wang, Z.; Wang, H.; et al. Additive Engineering for Efficient and Stable MAPbI3-Perovskite Solar Cells with an Efficiency of over 21%. ACS Appl. Mater. Interfaces 2021, 13, 44451–44459.
- 56.
Yang, Y.; Peng, H.; Liu, C.; et al. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A Mater. 2019, 7, 6450–6458.
- 57.
Mateen, M.; Arain, Z.; Liu, X.; et al. Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering. Sci. China Mater. 2020, 63, 2477–2486.
- 58.
Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; et al. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249.
- 59.
Chen, J.; Choy, W.C.H. Efficient and Stable All-Inorganic Perovskite Solar Cells. Solar RRL 2020, 4, 2000408.
- 60.
Ma, T.; Wang, S.; Zhang, Y.; et al. The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 2020, 55, 464–479.
- 61.
Patil, J.V.; Mali, S.S.; Hong, C.K. Reducing Defects of All-Inorganic γ-CsPbI2 Br Thin Films by Ethylammonium Bromide Additives for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 25576–25583.
- 62.
Kim, K.S.; Jin, I.S.; Park, S.H.; et al. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI 2 Br Films for Efficient and Stable All-Inorganic Perovskite Solar Cells. ACS Appl Mater Interfaces 2020, 12, 36228–36236.
- 63.
Ren, Y.; Hao, Y.; Zhang, N.; et al. Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all-inorganic solar cell. Chem. Eng. J. 2020, 392, 123805.
- 64.
Peng, H.; Cai, M.; Zhou, J.; et al. Structurally Reinforced All-Inorganic CsPbI2 Br Perovskite by Nonionic Polymer via Coordination and Hydrogen Bonds. Solar RRL 2020, 4, 2000216.
- 65.
Lü, J.; Huo, X.; Liu, W.; et al. Additive engineering by dicyandiamide for high-performance carbon-based inorganic perovskite solar cells. Mater. Today Energy 2024, 44, 101628.
- 66.
Fu, S.; Wang, J.; Liu, X.; et al. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem. Eng. J. 2021, 422, 130572.
- 67.
Patil, J.V.; Mali, S.S.; Hong, C.K. Grain size enlargement and controlled crystal growth by formamidinium chloride additive-added γ-CsPbI2Br thin films for stable inorganic perovskite solar cells. Mater. Today Chem. 2022, 26, 101118.
- 68.
Ayaydah, W.; Raddad, E.; Hawash, Z. Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines 2023, 14, 806.
- 69.
Abate, A. Stable Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 1896–1899.
- 70.
Dong, H.; Ran, C.; Gao, W.; et al. Crystallization Dynamics of Sn-Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices. Adv Energy Mater. 2022, 12, 2102213.
- 71.
Li, F.; Hou, X.; Wang, Z.; et al. FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Appl Mater Interfaces 2021, 13, 40656–40663.
- 72.
Tang, G.; Li, S.; Cao, J.; et al. Synergistic effects of the zinc acetate additive on the performance enhancement of Sn-based perovskite solar cells. Mater. Chem. Front. 2021, 5, 1995–2000.
- 73.
Li, G.; Su, Z.; Li, M.; et al. Ionic Liquid Stabilizing High-Efficiency Tin Halide Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2101539.
- 74.
Su, Y.; Yang, J.; Liu, G.; et al. Acetic Acid-Assisted Synergistic Modulation of Crystallization Kinetics and Inhibition of Sn 2+ Oxidation in Tin-Based Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2109631.
- 75.
Jin, Z.; Zhang, Z.; Xiu, J.; et al. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: Recent advances and challenges. J. Mater. Chem. A Mater. 2020, 8, 16166–16188.
- 76.
Ahmad, K.; Mobin, S.M. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412.
- 77.
Yang, Y.; Liu, C.; Cai, M.; et al. Dimension-Controlled Growth of Antimony-Based Perovskite-like Halides for Lead-Free and Semitransparent Photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 17062–17069.
- 78.
Kim, E.B.; Akhtar, M.S.; Shin, H.S.; et al. A review on two-dimensional (2D) and 2D–3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. J. Photochem. Photobiol. C Photochem. Rev. 2021, 48, 100405.
- 79.
Zhao, X.; Liu, T.; Loo, Y. Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Adv. Mater. 2022, 34, 2105849.
- 80.
Zhang, W.; Wu, X.; Zhou, J.; et al. Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 1842–1849.
- 81.
Wang, Z.; Liu, L.; Liu, X.; et al. Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 2022, 432, 134367.
- 82.
Yang, Y.; Liu, C.; Mahata, A.; et al. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. Energy Environ. Sci. 2020, 13, 3093–3101.
- 83.
Yu, S.; Meng, J.; Pan, Q.; et al. Imidazole additives in 2D halide perovskites: Impacts of -CN vs. -CH3 substituents reveal the mediation of crystal growth by phase buffering. Energy Environ. Sci. 2022, 15, 3321–3330.