2509001539
  • Open Access
  • Review

Additive Engineering in Crystallization Regulation of Highly Efficient Perovskite Solar Cell

  • Muhammad Arslan 1,   
  • Molang Cai 1, *,   
  • Xing Li 2,   
  • Xianggang Chen 1,   
  • Zhuoxin Li 1,   
  • Aboubacar Traore 1

Received: 10 Sep 2025 | Revised: 28 Sep 2025 | Accepted: 08 Oct 2025 | Published: 17 Oct 2025

Abstract

Metal halide perovskites are promising solar cell materials due to excellent photoelectric performance. High-quality films are crucial for stable perovskite solar cells (PSCs). However, defects, pinholes, and small grains hinder fabrication, causing nonradiative recombination. Among crystallization regulation strategies, additive engineering is versatile and effective for optimizing film quality via crystal growth control. This review summarizes the role of additive engineering in modulating crystallization across different perovskite types. For formamidinium (FA)-based perovskites, additives address problems like rapid crystallization, unstable secondary phases, residual stress, and random orientation, thereby stabilizing the phase and reducing grain boundaries. For methylammonium (MA)-based perovskites, additives (e.g., Lewis base-containing compounds and biomass-derived cellulose derivatives) adjust the lattice structure, slow down crystallization through intermediate adducts, and enhance grain alignment and defect healing. For all-inorganic CsPbX3, additives (e.g., alkylamines and liquid monomers) decelerate crystallization to enlarge grains, decrease roughness through ion coordination, and form hydrophobic grain boundaries. Mechanistically, additives adjust crystallization kinetics, passivate defects via ion coordination, relieve residual stress, and direct preferential growth. This review offers insights for scalable high-quality film fabrication—essential for PSC commercialization—with future exploration of additives is set to further unlock PSC performance.

References 

  • 1.
    Green, M.A.; Dunlop, E.D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 2024, 32, 425–441.
  • 2.
    Xu, J. USTC Set New Record in Perovskite Cell Efficiency. 2023. Available online: https://en.ustc.edu.cn/info/1007/4929.htm (accessed on 16 September 2024).
  • 3.
    LONGI. LONGi Sets New World-Record for Silicon Solar Cell Efficiency, Launching 2nd Generation Ultra-Efficient BC-Based Module. 2024. Available online: https://www.longi.com/en/news/longi-hi-mo9-bc-world-record/ (accessed on 8 May 2024).
  • 4.
    Liu, Z.; Ono, L.K.; Qi, Y. Additives in metal halide perovskite films and their applications in solar cells. J. Energy Chem. 2020, 46, 215–228.
  • 5.
    Li, H.; Wu, G.; Li, W.; et al. Additive Engineering to Grow Micron-Sized Grains for Stable High Efficiency Perovskite Solar Cells. Adv. Sci. 2019, 6, 1901241.
  • 6.
    Chen, J.; Kim, S.G.; Ren, X.; et al. Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. J. Mater. Chem. A Mater. 2019, 7, 4977–4987.
  • 7.
    Liu, C.; Tu, J.; Hu, X.; et al. Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Adv. Funct. Mater. 2019, 29, 1808059.
  • 8.
    Yang, I.S.; Park, N. Dual Additive for Simultaneous Improvement of Photovoltaic Performance and Stability of Perovskite Solar Cell. Adv. Funct. Mater. 2021, 31, 2100396.
  • 9.
    Si, H.; Liao, Q.; Kang, Z.; et al. Deciphering the NH4PbI3 Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite. Adv. Funct. Mater. 2017, 27, 1701804.
  • 10.
    Li, T.; Pan, Y.; Wang, Z.; et al. Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A Mater. 2017, 5, 12602–12652.
  • 11.
    Patil, S.V.; Dave, S.; Bhargava, K. Comparative Analysis of MAPbI3 and FAPbI3 based Perovskite Solar Cells: A Numerical Evaluation. In Proceedings of 28th National Conference on Condensed Matter Physics: Condensed Matter Days 2020 (CMDAYS20); Springer: Singapore, 2021; pp. 177–185.
  • 12.
    Zheng, Z.; Wang, S.; Hu, Y.; et al. Development of formamidinium lead iodide-based perovskite solar cells: Efficiency and stability. Chem. Sci. 2022, 13, 2167–2183.
  • 13.
    Cui, X.; Jin, J.; Tai, Q.; et al. Recent Progress on the Phase Stabilization of FAPbI3 for High-Performance Perovskite Solar Cells. Solar RRL 2022, 6, 2200497.
  • 14.
    Hu, H.; Singh, M.; Wan, X.; et al. Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A Mater. 2020, 8, 1578–1603.
  • 15.
    Bi, D.; Yi, C.; Luo, J.; et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142.
  • 16.
    Zhao, J.; Li, Z.; Wang, M.; et al. Exploring the film growth in perovskite solar cells. J. Mater. Chem. A Mater. 2021, 9, 6029–6049.
  • 17.
    Liu, C.; Cheng, Y.B.; Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 2020, 49, 1653–1687.
  • 18.
    Ke, L.; Ding, L. Perovskite crystallization. J. Semicond. 2021, 42, 080203.
  • 19.
    Yang, Y.; Xue, Z.; Chen, L.; et al. Large-area perovskite films for PV applications: A perspective from nucleation and crystallization. J. Energy Chem. 2021, 59, 626–641.
  • 20.
    Wang, Z.; Zhu, Z.; Jin, J.; et al. Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chem. Eng. J. 2022, 442, 136267.
  • 21.
    Ma, Y.; Liu, N.; Zai, H.; et al. Amidinium additives for high-performance perovskite solar cells. J. Mater. Chem. A Mater. 2022, 10, 3506–3512.
  • 22.
    Shi, X.; Chen, J.; Wu, Y.; et al. Efficient Formamidinium-Based Planar Perovskite Solar Cells Fabricated Through a CaI2–PbI2 Precursor. ACS Sustain. Chem. Eng. 2020, 8, 4267–4275.
  • 23.
    Cao, Y.; Yan, N.; Wang, M.; et al. Designed Additive to Regulated Crystallization for High Performance Perovskite Solar Cell. Angew. Chem. Int. Ed. 2024, 63, e202404401.
  • 24.
    Wang, X.; Sun, W.; Tu, Y.; et al. Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%. Chem. Eng. J. 2022, 446, 137416.
  • 25.
    Wang, H.; Zhang, Z.; Wang, X.; et al. Phenyltrimethylammonium chloride additive for highly efficient and stable FAPbI3 perovskite solar cells. Nano Energy 2024, 123, 109423.
  • 26.
    Wang, M.; Li, L.; Wang, J.; et al. Accelerating direct formation of α-FAPbl3 by dual-additives synergism for inverted perovskite solar cells with efficiency exceeding 26%. Chem. Eng. J. 2025, 505, 159056.
  • 27.
    Yin, Y.; Zhang, S.; Zhou, L.; et al. Combining in-situ formed PbI2 passivation and secondary passivation for highly efficient and stable planar heterojunction perovskite solar cells. Org. Electron. 2022, 100, 106361.
  • 28.
    Yang, J.A.; Xiao, A.; Xie, L.; et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta 2020, 338, 135697.
  • 29.
    Gao, Y.; Raza, H.; Zhang, Z.; et al. Rethinking the Role of Excess/Residual Lead Iodide in Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2215171.
  • 30.
    Zhao, Y.; Ma, F.; Qu, Z.; et al. Inactive (PbI2)2 RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534.
  • 31.
    Luo, S.; Cao, S.; Zheng, T.; et al. Melamine holding PbI 2 with three “arms”: An effective chelation strategy to control the lead iodide to perovskite conversion for inverted perovskite solar cells. Energy Environ. Sci. 2025, 18, 2436–2451.
  • 32.
    Wang, Y.; Cheng, Y.; Yin, C.; et al. Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives. Nanomicro Lett. 2024, 16, 183.
  • 33.
    Dailey, M.; Li, Y.; Printz, A.D. Residual Film Stresses in Perovskite Solar Cells: Origins, Effects, and Mitigation Strategies. ACS Omega 2021, 6, 30214–30223.
  • 34.
    Rolston, N.; Bush, K.A.; Printz, A.D.; et al. Engineering Stress in Perovskite Solar Cells to Improve Stability. Adv. Energy Mater. 2018, 8, 1802139.
  • 35.
    Hu, S.; Duan, C.; Du, H.; et al. A stress relaxation strategy for preparing high-quality organic–inorganic perovskite thin films via a vapor–solid reaction. J. Mater. Chem. A Mater. 2023, 11, 23387–23396.
  • 36.
    Zuo, G.; Zhu, P.; Zeng, J.; et al. Modulating Internal Residual Stress for Efficient and Durable Flexible Perovskite Solar Cells. Solar RRL 2025, 9, 2500052.
  • 37.
    Sun, Q.; Tuo, B.; Ren, Z.; et al. A Thiourea Competitive Crystallization Strategy for FA-Based Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2208885.
  • 38.
    Li, M.; Zhou, J.; Tan, L.; et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation 2022, 3, 100310.
  • 39.
    Fang, Z.; Yan, N.; Liu, S. Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives. InfoMat 2022, 4, e12369.
  • 40.
    Li, B.; Shen, T.; Yun, S. Recent progress of crystal orientation engineering in halide perovskite photovoltaics. Mater. Horiz. 2023, 10, 13–40.
  • 41.
    Xu, Z.; Gong, Y.; Wang, J.; et al. Carbon nanofibers fabricated via electrospinning to guide crystalline orientation for stable perovskite solar cells with efficiency over 24%. Chem. Eng. J. 2023, 453, 139961.
  • 42.
    Li, M.; Sun, R.; Chang, J.; et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 2023, 14, 573.
  • 43.
    Wu, Y.; Wang, Q.; Chen, Y.; et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 2022, 15, 4700–4709.
  • 44.
    Kim, G.; Min, H.; Lee, K.S.; et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.
  • 45.
    Zhou, T.; Xu, Z.; Wang, R.; et al. Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability. Adv. Mater. 2022, 34, 2200705.
  • 46.
    Zhong, H.; Liu, X.; Liu, M.; et al. Suppressing the crystallographic disorders induced by excess PbI2 to achieve trade-off between efficiency and stability for PbI2-rich perovskite solar cells. Nano Energy 2023, 105, 108014.
  • 47.
    Li, Q.; Li, D.; Li, Z.; et al. Tailoring Crystal Growth Regulation and Dual Passivation for Air-Processed Efficient Perovskite Solar Cells. Adv. Sci. 2025, 12, 2407401.
  • 48.
    Zhu, H.; Zhang, F.; Xiao, Y.; et al. Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A Mater. 2018, 6, 4971–4980.
  • 49.
    Liu, P.; Chen, Y.; Xiang, H.; et al. Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH3NH3PbI3-Based Perovskite Solar Cell with Efficiency Beyond 21%. Small 2021, 17, 2102186.
  • 50.
    Shi, X.; Wu, Y.; Chen, J.; et al. Thermally stable perovskite solar cells with efficiency over 21% via a bifunctional additive. J. Mater. Chem. A Mater. 2020, 8, 7205–7213.
  • 51.
    Lee, J.W.; Kim, H.S.; Park, N.G. Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 311–319.
  • 52.
    Xu, C.; Zhang, Z.; Zhang, S.; et al. Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives. Adv. Funct. Mater. 2021, 31, 2009425.
  • 53.
    Cao, X.; Li, C.; Li, Y.; et al. Enhanced performance of perovskite solar cells by modulating the Lewis acid–base reaction. Nanoscale 2016, 8, 19804–19810.
  • 54.
    Zhu, X.; Lin, R.; Gu, H.; et al. Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI3-Based Inverted Perovskite Solar Cells. Energy Environ. Mater. 2023, 6, e12426.
  • 55.
    Tao, J.; Wang, Z.; Wang, H.; et al. Additive Engineering for Efficient and Stable MAPbI3-Perovskite Solar Cells with an Efficiency of over 21%. ACS Appl. Mater. Interfaces 2021, 13, 44451–44459.
  • 56.
    Yang, Y.; Peng, H.; Liu, C.; et al. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J. Mater. Chem. A Mater. 2019, 7, 6450–6458.
  • 57.
    Mateen, M.; Arain, Z.; Liu, X.; et al. Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering. Sci. China Mater. 2020, 63, 2477–2486.
  • 58.
    Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; et al. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249.
  • 59.
    Chen, J.; Choy, W.C.H. Efficient and Stable All-Inorganic Perovskite Solar Cells. Solar RRL 2020, 4, 2000408.
  • 60.
    Ma, T.; Wang, S.; Zhang, Y.; et al. The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 2020, 55, 464–479.
  • 61.
    Patil, J.V.; Mali, S.S.; Hong, C.K. Reducing Defects of All-Inorganic γ-CsPbI2 Br Thin Films by Ethylammonium Bromide Additives for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 25576–25583.
  • 62.
    Kim, K.S.; Jin, I.S.; Park, S.H.; et al. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI 2 Br Films for Efficient and Stable All-Inorganic Perovskite Solar Cells. ACS Appl Mater Interfaces 2020, 12, 36228–36236.
  • 63.
    Ren, Y.; Hao, Y.; Zhang, N.; et al. Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all-inorganic solar cell. Chem. Eng. J. 2020, 392, 123805.
  • 64.
    Peng, H.; Cai, M.; Zhou, J.; et al. Structurally Reinforced All-Inorganic CsPbI2 Br Perovskite by Nonionic Polymer via Coordination and Hydrogen Bonds. Solar RRL 2020, 4, 2000216.
  • 65.
    Lü, J.; Huo, X.; Liu, W.; et al. Additive engineering by dicyandiamide for high-performance carbon-based inorganic perovskite solar cells. Mater. Today Energy 2024, 44, 101628.
  • 66.
    Fu, S.; Wang, J.; Liu, X.; et al. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem. Eng. J. 2021, 422, 130572.
  • 67.
    Patil, J.V.; Mali, S.S.; Hong, C.K. Grain size enlargement and controlled crystal growth by formamidinium chloride additive-added γ-CsPbI2Br thin films for stable inorganic perovskite solar cells. Mater. Today Chem. 2022, 26, 101118.
  • 68.
    Ayaydah, W.; Raddad, E.; Hawash, Z. Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines 2023, 14, 806.
  • 69.
    Abate, A. Stable Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 1896–1899.
  • 70.
    Dong, H.; Ran, C.; Gao, W.; et al. Crystallization Dynamics of Sn-Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices. Adv Energy Mater. 2022, 12, 2102213.
  • 71.
    Li, F.; Hou, X.; Wang, Z.; et al. FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Appl Mater Interfaces 2021, 13, 40656–40663.
  • 72.
    Tang, G.; Li, S.; Cao, J.; et al. Synergistic effects of the zinc acetate additive on the performance enhancement of Sn-based perovskite solar cells. Mater. Chem. Front. 2021, 5, 1995–2000.
  • 73.
    Li, G.; Su, Z.; Li, M.; et al. Ionic Liquid Stabilizing High-Efficiency Tin Halide Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2101539.
  • 74.
    Su, Y.; Yang, J.; Liu, G.; et al. Acetic Acid-Assisted Synergistic Modulation of Crystallization Kinetics and Inhibition of Sn 2+ Oxidation in Tin-Based Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2109631.
  • 75.
    Jin, Z.; Zhang, Z.; Xiu, J.; et al. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: Recent advances and challenges. J. Mater. Chem. A Mater. 2020, 8, 16166–16188.
  • 76.
    Ahmad, K.; Mobin, S.M. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412.
  • 77.
    Yang, Y.; Liu, C.; Cai, M.; et al. Dimension-Controlled Growth of Antimony-Based Perovskite-like Halides for Lead-Free and Semitransparent Photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 17062–17069.
  • 78.
    Kim, E.B.; Akhtar, M.S.; Shin, H.S.; et al. A review on two-dimensional (2D) and 2D–3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. J. Photochem. Photobiol. C Photochem. Rev. 2021, 48, 100405.
  • 79.
    Zhao, X.; Liu, T.; Loo, Y. Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Adv. Mater. 2022, 34, 2105849.
  • 80.
    Zhang, W.; Wu, X.; Zhou, J.; et al. Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 1842–1849.
  • 81.
    Wang, Z.; Liu, L.; Liu, X.; et al. Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 2022, 432, 134367.
  • 82.
    Yang, Y.; Liu, C.; Mahata, A.; et al. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. Energy Environ. Sci. 2020, 13, 3093–3101.
  • 83.
    Yu, S.; Meng, J.; Pan, Q.; et al. Imidazole additives in 2D halide perovskites: Impacts of -CN vs. -CH3 substituents reveal the mediation of crystal growth by phase buffering. Energy Environ. Sci. 2022, 15, 3321–3330.
Share this article:
How to Cite
Arslan, M.; Cai, M.; Li, X.; Chen, X.; Li, Z.; Traore, A. Additive Engineering in Crystallization Regulation of Highly Efficient Perovskite Solar Cell. Materials and Sustainability 2025, 1 (4), 13. https://doi.org/10.53941/matsus.2025.100013.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.