2509001547
  • Open Access
  • Commentary

Commentary on “Green” Fabrication of High-Performance Transparent Conducting Electrodes by Blade Coating and Photonic Curing on PET for Perovskite Solar Cells

  • Bin Cai,   
  • Ming Cheng *

Received: 18 Sep 2025 | Revised: 25 Sep 2025 | Accepted: 27 Sep 2025 | Published: 29 Sep 2025

Abstract

Flexible transparent conducting electrodes (TCEs) are critically important for next-generation optoelectronics, attracting significant interest across diverse research fields. This study presents a clear and timely advance in their manufacturing by demonstrating a scalable, hybrid TCE. The authors combine blade-coated silver nanowires (AgNWs) with flexographically printed metal bus lines (MBLs), cap the structure with an indium zinc oxide (IZO) overcoat, and subsequently fuse the stack using intense pulsed light (IPL) photonic curing. This approach yields a multiscale conductor on polyethylene terephthalate (PET) substrates that simultaneously achieves low sheet resistance, high transparency across the visible and near-infrared spectrum, and low surface roughness. The work is explicitly framed around “green” manufacturing principles, emphasizing a low thermal budget, inherent compatibility with roll-to-roll (R2R) processing, and impressive line speeds of up to 11 m·min−1 in stitching mode. Moving beyond fundamental materials metrics, the authors underscore the device-level relevance of their TCE by fabricating p-i-n perovskite solar cells (PSCs). These devices achieved champion power conversion efficiencies (PCEs) of up to 12.2% (averaging ~10.5%), outperforming commercial PET/ITO-based controls by approximately 50%. In this commentary, we first recognize the study’s substantive contributions to scalable TCE fabrication. We then propose practical refinements that could further strengthen the scientific rigor and translational potential of the technology. Finally, we conclude with a constructive critique of several unresolved questions; addressing these would undoubtedly represent a significant advance for the field. 

References 

  • 1.
    Sreekumar, S.; Bruevich, V.; Podzorov, V.; et al. ZnO/Ag/ZnO multilayers as an n-type transparent conducting electrode for transparent organic light-emitting diodes. Appl. Surf. Sci. 2024, 670, 160596.
  • 2.
    Kamijo, T.; de Winter, S.; Panditha, P.; et al. Printed Copper Grid Transparent Conducting Electrodes for Organic Light-Emitting Diodes. ACS Appl. Electron. Mater. 2022, 4, 698–706.
  • 3.
    Xu, J.; Du, K.; Peng, F.; et al. Highly conductive polymer electrodes for polymer light-emitting diodes. NPJ Flex. Electron. 2024, 8, 38.
  • 4.
    Song, T.-B.; Li, N. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes. Electronics 2014, 3, 190–204.
  • 5.
    Kim, C.-C.; Lee, H.-H.; Oh, K.H.; et al. Highly stretchable, transparent ionic touch panel. Science 2016, 353, 682–687.
  • 6.
    Song, I.; Lee, W.-J.; Ke, Z.; et al. An n-doped capacitive transparent conductor for all-polymer electrochromic displays. Nat. Electron. 2024, 7, 1158–1169.
  • 7.
    Traiwattanapong, W.; Molahalli, V.; Pattanaporkratana, A.; et al. Recent Developments in Thermally Stable Transparent Thin Films for Heater Applications: A Systematic Review. Nanomaterials 2024, 14, 2011.
  • 8.
    Benramache, S.; Belahssen, O.; Temam, H.B. Effect of band gap energy on the electrical conductivity in doped ZnO thin film. J. Semicond. 2014, 35, 073001.
  • 9.
    Bädeker, K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Ann. Der Phys. 1907, 327, 749-766.
  • 10.
    Chandiramouli, R.; Jeyaprakash, B.G. Review of CdO thin films. Solid State Sci. 2013, 16, 102–110.
  • 11.
    Dalapati, G.K.; Sharma, H.; Guchhait, A.; et al. Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. J. Mater. Chem. A 2021, 9, 16621–16684.
  • 12.
    Ma, Z.; Li, Z.; Liu, K.; et al. Indium-Tin-Oxide for High-performance Electro-optic Modulation. Nanophotonics 2015, 4, 198–213.
  • 13.
    Patel, N.P.; Chauhan, K.V. Structural, optical and electrical study of ZnO:Al thin films: A review. Mater. Today Proc. 2022, 62, 3386–3396.
  • 14.
    Kwon, J.; Suh, Y.D.; Lee, J.; et al. Recent progress in silver nanowire based flexible/wearable optoelectronics. J. Mater. Chem. C 2018, 6, 7445–7461.
  • 15.
    Langley, D.; Giusti, G.; Mayousse, C.; et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 2013, 24, 452001.
  • 16.
    Hwang, B.-Y.; Choi, S.-H.; Lee, K.-W.; et al. Highly stretchable and transparent electrode film based on SWCNT/Silver nanowire hybrid nanocomposite. Compos. Part B Eng. 2018, 151, 1–7.
  • 17.
    Hosseinpour Chermahini, S.; Anvari, R.; Ostad-Ali-Askari, K. Recent approach in producing transparent conductive films (TCFs). Int. J. Syst. Assur. Eng. Manag. 2023, 1–13.
  • 18.
    Ravikumar, K.; Dangate, M.S. Advancements in stretchable organic optoelectronic devices and flexible transparent conducting electrodes: Current progress and future prospects. Heliyon 2024, 10, e33002.
  • 19.
    Kumar, S.; Seo, Y. Flexible Transparent Conductive Electrodes: Unveiling Growth Mechanisms, Material Dimensions, Fabrication Methods, and Design Strategies. Small Methods 2024, 8, 2300908.
  • 20.
    Nair, N.M.; Zumeit, A.; Dahiya, R. Transparent and Transient Flexible Electronics. Adv. Sci. 2025, 12, e05133.
  • 21.
    Wang, J.; Fan, J.; Wan, T.; et al. Recent Progress in Silver Nanowire-Based Transparent Conductive Electrodes. Adv. Energy Sustain. Res. 2025, 6, 2500033.
Share this article:
How to Cite
Cai, B.; Cheng, M. Commentary on “Green” Fabrication of High-Performance Transparent Conducting Electrodes by Blade Coating and Photonic Curing on PET for Perovskite Solar Cells. Materials and Sustainability 2025, 1 (3), 11. https://doi.org/10.53941/matsus.2025.100011.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.