2601002787
  • Open Access
  • Review

Lead-Free Perovskite and Perovskite-Inspired Materials for Indoor Photovoltaics: A Perspective

  • EQ Han 1,   
  • Jung Ho Yun 1,*,   
  • Miaoqiang Lyu 2,*

Received: 10 Oct 2025 | Revised: 27 Dec 2025 | Accepted: 07 Jan 2026 | Published: 22 Jan 2026

Abstract

The past few years have witnessed increasing research interest in lead-free perovskites for indoor photovoltaics. Lead-free perovskites along with many reported perovskite halide analogue compounds take advantage of the solution-processibility, low-toxicity and high-theoretical efficiencies under weak indoor light conditions. Therefore, these semiconductors show promising potential as the next-generation indoor photovoltaics for integration with low-power wearables and internet-of-things electronics. In this perspective, we discuss the overview of the current research progress of lead-free perovskites for IPVs and highlight the challenges in this field as well as the speculative directions for further development.

References 

  • 1.

    Grand View Research, Inc. Available online: https://www.grandviewresearch.com/industry-analysis/iot-sensors-market-report (accessed on 21 August 2025).

  • 2.

    EnABLES—European Infrastructure Powering the Internet of Things. EnABLES Position Paper Coordinated by Tyndall Recommends Key Actions to Power IoT in a Reliable and Sustainable Way. EnABLES—European Infrastructure Powering the Internet of Things. EnABLES Position Paper Coordinated by Tyndall Recommends Key Actions to Power IoT in a Reliable and Sustainable Way. EnABLES. Available online: https://www.enables-project.eu/outputs/position-paper/ (accessed on 26 August 2025).

  • 3.

    Grandhi, G.K.; Koutsourakis, G.; Blakesley, J.C.; et al. Promises and challenges of indoor photovoltaics. Nat. Rev. Clean Technol. 2025, 1, 132–147. https://doi.org/10.1038/s44359-024-00013-1.

  • 4.

    Ho, J.K.W.; Yin, H.; So, S.K. From 33% to 57%–an elevated potential of efficiency limit for indoor photovoltaics. J. Mater. Chem. A 2020, 8, 1717–1723. https://doi.org/10.1039/C9TA11894B.

  • 5.

    Kim, G.; Lim, J.W.; Kim, J.; et al. Transparent thin-film silicon solar cells for indoor light harvesting with conversion efficiencies of 36% without photodegradation. ACS Appl. Mater. Interfaces 2020, 12, 27122–27130. https://doi.org/10.1021/acsami.0c04517.

  • 6.

    Klitzke, M.; Schygulla, P.; Klein, C.; et al. Optimization of GaInP absorber design for indoor photovoltaic conversion efficiency above 40%. Appl. Phys. Lett. 2025, 127. https://doi.org/10.1063/5.0277001.

  • 7.

    Zhang, T.; An, C.; Xu, Y.; et al. A Medium-Bandgap Nonfullerene Acceptor Enabling Organic Photovoltaic Cells with 30% Efficiency under Indoor Artificial Light. Adv. Mater. 2022, 34, e2207009. https://doi.org/10.1002/adma.202207009.

  • 8.

    Jebin, P.R.; George, A.S.; Mishra, R.K.; et al. Enhanced indoor photovoltaic efficiency of 40% in dye-sensitized solar cells using cocktail starburst triphenylamine dyes and dual-species copper electrolyte. J. Mater. Chem. A 2024, 12, 32721–32734. https://doi.org/10.1039/D4TA05513F.

  • 9.

    Deng, H.; Sun, Q.; Yang, Z.; et al. Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications. Nat. Commun. 2021, 12, 3107. https://doi.org/10.1038/s41467-021-23343-1.

  • 10.

    Mathews, I.; Kantareddy, S.N.; Buonassisi, T.; et al. Technology and market perspective for indoor photovoltaic cells. Joule 2019, 3, 1415–1426. https://doi.org/10.1016/j.joule.2019.03.026.

  • 11.

    Peng, Y.; Huq, T.N.; Mei, J.; et al. Lead-Free Perovskite-Inspired Absorbers for Indoor Photovoltaics. Adv. Energy Mater. 2020, 11, 2002761. https://doi.org/10.1002/aenm.202002761.

  • 12.

    Ma, Q.; Wang, Y.; Liu, L.; et al. One-step dual-additive passivated wide-bandgap perovskites to realize 44.72%-efficient indoor photovoltaics. Energy Environ. Sci. 2024, 17, 1637–1644. https://doi.org/10.1039/d3ee04022d.

  • 13.

    Wang, Y.; Yang, T.; Cai, W.; et al. Defect Passivation Refinement in Perovskite Photovoltaics: Achieving Efficiency over 45% under Low-Light and Low-Temperature Dual Extreme Conditions. Adv. Mater. 2024, 36, e2312014. https://doi.org/10.1002/adma.202312014.

  • 14.

    Moody, N.; Sesena, S.; deQuilettes, D.W.; et al. Assessing the regulatory requirements of lead-based perovskite photovoltaics. Joule 2020, 4, 970–974. https://doi.org/10.1016/j.joule.2020.03.018.

  • 15.

    Grandhi, G.K.; Jagadamma, L.K.; Sugathan, V.; et al. Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the future. Chem. Commun. 2023, 59, 8616–8625. https://doi.org/10.1039/d3cc01881d.

  • 16.

    Polyzoidis, C.; Rogdakis, K.; Kymakis, E. Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Adv. Energy Mater. 2021, 11. https://doi.org/10.1002/aenm.202101854.

  • 17.

    Giustino, F.; Snaith, H.J. Toward Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1233–1240. https://doi.org/10.1021/acsenergylett.6b00499.

  • 18.

    Lamminen, N.; Lahtinen, J.; Krishnaiah, M.; et al. Surpassing the 10% Efficiency Threshold in Perovskite-Inspired Indoor Photovoltaics. ACS Energy Lett. 2025, 10, 3415–3418. https://doi.org/10.1021/acsenergylett.5c01472.

  • 19.

    Abdel-Shakour, M.; Wang, J.; Huang, J.; et al. 6H-Intermediate Phase Enabled Slow Crystal Growth of Tin Halide Perovskites for Indoor Photovoltaics. Angew. Chem. Int. Ed. 2025, 64, e202421547. https://doi.org/10.1002/anie.202421547.

  • 20.

    Lamminen, N.; Grandhi, G.K.; Fasulo, F.; et al. Triple A-Site Cation Mixing in 2D Perovskite-Inspired Antimony Halide Absorbers for Efficient Indoor Photovoltaics. Adv. Energy Mater. 2022, 13, 2203175. https://doi.org/10.1002/aenm.202203175.

  • 21.

    Xu, J.; Castriotta, L.A.; Skafi, Z.; et al. Lead-free solar cells and modules with antimony-based perovskite inspired materials for indoor photovoltaics. Mater. Today Energy 2025, 49, 101823. https://doi.org/10.1016/j.mtener.2025.101823.

  • 22.

    Guo, Y.X.; Zhao, F.; Zhang, C.J.; et al. Suppressing the Electron-Phonon Coupling in 2D Perovskite Cs3Sb2I9 for Lead-Free Indoor Photovoltaics. Adv. Sci. 2025, 12, e09281. https://doi.org/10.1002/advs.202509281.

  • 23.

    Singh, A.; Lai, P.T.; Mohapatra, A.; et al. Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem. Eng. J. 2021, 419, 129424. https://doi.org/10.1016/j.cej.2021.129424.

  • 24.

    Guerrero, N.B.C.; Guo, Z.L.; Shibayama, N.; et al. A Semitransparent Silver-Bismuth Iodide Solar Cell with Voc above 0.8 V for Indoor Photovoltaics. ACS Appl. Energ. Mater. 2023, 6, 10274–10284. https://doi.org/10.1021/acsaem.3c00223.

  • 25.

    Kumar, R.; Liu, H.R.; Nabavi, S.A.; et al. Impact of Indium Doping in Lead-Free (CH3NH3)3Bi2−xInxI9 Perovskite Photovoltaics for Indoor and Outdoor Light Harvesting. ACS Appl. Electron. Mater. 2024, 6, 8360–8368. https://doi.org/10.1021/acsaelm.4c01576.

  • 26.

    Barichello, J.; Shankar, G.; Mariani, P.; et al. Unveiling the potential of Cs2AgBiBr6 perovskites for next-generation see-through photovoltaics. Mater. Today Energy 2024, 46, 9. https://doi.org/10.1016/j.mtener.2024.101725.

  • 27.

    Arivazhagan, V.; Gun, F.; Reddy, R.K.K.; et al. Indoor light harvesting lead-free 2-aminothiazolium bismuth iodide solar cells. Sustain. Energ. Fuels 2022, 6, 3179–3186. https://doi.org/10.1039/d1se02017j.

  • 28.

    Panda, D.P.; Issaoui, R.; Iqbal, Z.; et al. DMSO-Free Tin Halide Perovskites for Indoor Photovoltaics. Acs Energy Lett. 2025, 10, 3789–3798. https://doi.org/10.1021/acsenergylett.5c01581.

  • 29.

    Yang, W.F.; Cao, J.J.; Dong, C.; et al. Suppressed oxidation of tin perovskite by Catechin for eco-friendly indoor photovoltaics. Appl. Phys. Lett. 2021, 118, 6. https://doi.org/10.1063/5.0032951.

  • 30.

    Yang, W.F.; Cao, J.J.; Chen, J.; et al. Nicotinamide-Modified PEDOT:PSS for High Performance Indoor and Outdoor Tin Perovskite Photovoltaics. Sol. RRL 2021, 5, 7. https://doi.org/10.1002/solr.202100713.

  • 31.

    Cao, J.-J.; Lou, Y.-H.; Yang, W.-F.; et al. Multifunctional potassium thiocyanate interlayer for eco-friendly tin perovskite indoor and outdoor photovoltaics. Chem. Eng. J. 2022, 433, 133832. https://doi.org/10.1016/j.cej.2021.133832.

  • 32.

    Gao, Z.; Wang, J.F.; Xiao, H.B.; et al. Adhesion-Controlled Heterogeneous Nucleation of Tin Halide Perovskites for Eco-Friendly Indoor Photovoltaics. Adv. Mater. 2024, 36, 2403413. https://doi.org/10.1002/adma.202403413.

  • 33.

    Pecunia, V.; Occhipinti, L.G.; Chakraborty, A.; et al. Lead-free halide perovskite photovoltaics: Challenges, open questions, and opportunities. APL Mater. 2020, 8, 12. https://doi.org/10.1063/5.0022271.

  • 34.

    Abate, A. Stable Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 1896–1899. https://doi.org/10.1021/acsenergylett.3c00282.

  • 35.

    Luo, X.H.; Liu, X.; Han, L.Y. Lead-free perovskite solar cells, what's next? Next Energy 2023, 1, 3. https://doi.org/10.1016/j.nxener.2023.100011.

  • 36.

    Guo, Y.X.; Zhou, J.; Zhao, F.; et al. Carbon-based 2D-layered Rb0.15Cs2.85Sb2ClxI9−x solar cells with superior open-voltage up to 0.88 V. Nano Energy 2021, 88, 106281. https://doi.org/10.1016/j.nanoen.2021.106281.

  • 37.

    Schmitz, F.; Lago, N.; Fagiolari, L.; et al. High Open-Circuit Voltage Cs2AgBiBr6 Carbon-Based Perovskite Solar Cells via Green Processing of Ultrasonic Spray-Coated Carbon Electrodes from Waste Tire Sources. ChemSusChem 2022, 15, 10. https://doi.org/10.1002/cssc.202201590.

  • 38.

    Ghasemi, M.; Zhang, L.; Yun, J.H.; et al. Dual-ion-diffusion induced degradation in lead-free Cs2AgBiBr6 double perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2002342. https://doi.org/10.1002/adfm.202002342.

  • 39.

    Huang, J.; Xiang, H.; Ran, R.; et al. Fundamental understanding in the performance-limiting factors of Cs2AgBiBr6-based perovskite photovoltaics. Renew. Sustain. Energy Rev. 2024, 191, 114187. https://doi.org/10.1016/j.rser.2023.114187.

  • 40.

    Zhang, Z.; Sun, Q.; Lu, Y.; et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 2022, 13, 3397. https://doi.org/10.1038/s41467-022-31016-w.

  • 41.

    Alanazi, T.I.; Shaker, A.; Selim, D. Performance analysis of hydrogenated Cs2AgBiBr6 perovskite solar cells under white LED illumination. J. Alloy. Compd. 2025, 1010, 177354. https://doi.org/10.1016/j.jallcom.2024.177354.

  • 42.

    Al-Anesi, B.; Grandhi, G.K.; Pecoraro, A.; et al. Antimony-bismuth alloying: the key to a major boost in the efficiency of lead-free perovskite-inspired indoor photovoltaics. ChemRxiv 2023. https://doi.org/10.26434/chemrxiv-2023-nb5jj.

  • 43.

    Grandhi, G.K.; Al-Anesi, B.; Pasanen, H.; et al. Enhancing the Microstructure of Perovskite-Inspired Cu-Ag-Bi-I Absorber for Efficient Indoor Photovoltaics. Small 2022, 18, e2203768. https://doi.org/10.1002/smll.202203768.

  • 44.

    Li, X.; Nasti, G.; Dreessen, C.; et al. Printing of tin perovskite solar cells via controlled crystallization. Sustain. Energ. Fuels 2025, 9, 2063–2071. https://doi.org/10.1039/d4se01321b.

  • 45.

    Uppara, B.; Singh, S.; Avasthi, S.; et al. Optimization of laser patterning process for eco-friendly tin-halide perovskite solar module–with a nanosecond green laser. Thin Solid Film. 2024, 807, 140542. https://doi.org/10.1016/j.tsf.2024.140542.

  • 46.

    Zuraw, W.; Vinocour Pacheco, F.A.; Sanchez-Diaz, J.; et al. Large-Area, Flexible, Lead-Free Sn-Perovskite Solar Modules. ACS Energy Lett. 2023, 8, 4885–4887. https://doi.org/10.1021/acsenergylett.3c02066.

  • 47.

    Correa-Baena, J.-P.; Nienhaus, L.; Kurchin, R.C.; et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem. Mater. 2018, 30, 3734–3742. https://doi.org/10.1021/acs.chemmater.8b00676.

  • 48.

    Chen, Z.; Yu, C.; Shum, K.; et al. Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy. J. Lumin. 2012, 132, 345–349. https://doi.org/10.1016/j.jlumin.2011.09.006.

  • 49.

    Wuttig, M.; Schön, C.F.; Schumacher, M.; et al. Halide perovskites: Advanced photovoltaic materials empowered by a unique bonding mechanism. Adv. Funct. Mater. 2022, 32, 2110166. https://doi.org/10.1002/adfm.202110166

  • 50.

    Zhang, Z.; Huang, Y.; Jin, J.; et al. Mechanistic understanding of oxidation of tin-based perovskite solar cells and mitigation strategies. Angew. Chem. Int. Ed. 2023, 62, e202308093. https://doi.org/10.1002/anie.202308093.

  • 51.

    Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; et al. Instability of tin iodide perovskites: bulk p-doping versus surface tin oxidation. ACS Energy Lett. 2020, 5, 2787–2795. https://doi.org/10.1021/acsenergylett.0c01174.

  • 52.

    Vidal, R.; Lamminen, N.; Holappa, V.; et al. Assessing the Environmental Impact of Pnictogen-based Perovskite-Inspired Materials for Indoor Photovoltaics. Adv. Energy Mater. 2025, 15, 16. https://doi.org/10.1002/aenm.202403981.

  • 53.

    Srinu, D.; Kumar, A. Lead-free, stable, mixed SnGe perovskites for light to electricity conversion applications in indoor and space conditions. J. Comput. Electron. 2025, 24, 13. https://doi.org/10.1007/s10825-025-02367-6.

  • 54.

    Salem, M.S.; Shaker, A.; Salah, M.M.; et al. Comprehensive TCAD simulation and optimization of lead-free AgBiI4 solar cells: Migration from single cell to high-performance indoor photovoltaic modules. Ain Shams Eng. J. 2025, 16, 17. https://doi.org/10.1016/j.asej.2025.103371.

  • 55.

    Arif, M.Z.; Zhou, G.B.; Hasan, M.M. ANN-integrated modeling of HTL-free Cs2SnI6 perovskite solar cells under indoor and outdoor light spectra. J. Alloy. Compd. 2025, 1036, 21. https://doi.org/10.1016/j.jallcom.2025.181801.

  • 56.

    Henkel, P.; Li, J.R.; Grandhi, G.K.; et al. Screening Mixed-Metal Sn2M(III)Ch2X3 Chalcohalides for Photovoltaic Applications. Chem. Mater. 2023, 35, 7761–7769. https://doi.org/10.1021/acs.chemmater.3c01629.

  • 57.

    Njema, G.G.; Kibet, J.K. A review of chalcogenide-based perovskites as the next novel materials: Solar cell and optoelectronic applications, catalysis and future perspectives. Next Nanotechnol. 2025, 7, 100102. https://doi.org/10.1016/j.nxnano.2024.100102.

  • 58.

    Jailani, J.M.; Luu, A.; Salvosa, E.; et al. Accurate Performance Characterization, Reporting, and Benchmarking for Indoor Photovoltaics. Joule 2024, 9, 102126. https://doi.org/10.1016/j.joule.2025.102126.

  • 59.

    Maietta, I.; Otero-Martínez, C.; Fernández, S.; et al. The toxicity of lead and lead-free perovskite precursors and nanocrystals to human cells and aquatic organisms. Adv. Sci. 2025, 12, 2415574. https://doi.org/10.1002/advs.202415574.

  • 60.

    Li, J.; Cao, H.-L.; Jiao, W.-B.; et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310. https://doi.org/10.1038/s41467-019-13910-y.

  • 61.

    Schileo, G.; Grancini, G. Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J. Mater. Chem. C 2021, 9, 67–76. https://doi.org/10.1039/D0TC04552G.

  • 62.

    Ma, X.; Yao, X.; Zhao, Y.; et al. Life cycle toxicity and reduction potential analysis of perovskite photovoltaic technology. J. Environ. Manag. 2025, 393, 127170. https://doi.org/10.1016/j.jenvman.2025.127170.

  • 63.

    Grandhi, G.K.; Toikkonen, S.; Al-Anesi, B.; et al. Perovskite-inspired Cu2AgBiI6 for mesoscopic indoor photovoltaics under realistic low-light intensity conditions. Sustain. Energ. Fuels 2023, 7, 66–73. https://doi.org/10.1039/d2se00995a.

  • 64.

    Krishnaiah, M.; Singh, K.; Monga, S.; et al. Perovskite-Inspired Cs₂AgBi₂I₉: A Promising Photovoltaic Absorber for Diverse Indoor Environments. Adv. Energy Mater. 2024, 15, 2404547. https://doi.org/10.1002/aenm.202404547.

Share this article:
How to Cite
Han, E.; Yun, J. H.; Lyu, M. Lead-Free Perovskite and Perovskite-Inspired Materials for Indoor Photovoltaics: A Perspective. Materials and Sustainability 2026, 2 (1), 1. https://doi.org/10.53941/matsus.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.