- 1.
Seuring, J.; Agarwal, S. Polymers with Upper Critical Solution Temperature in Aqueous Solution: Unexpected Properties from Known Building Blocks. ACS Macro Lett. 2013, 2, 597–600. https://doi.org/10.1021/mz400227y.
- 2.
Zhang, Q.L.; Hoogenboom, R. Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog. Polym. Sci. 2015, 48, 122–142. https://doi.org/10.1016/j.progpolymsci.2015.02.003.
- 3.
Cook, M.T.; Haddow, P.; Kirton, S.B.; McAuley, W.J. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Gelators for Healthcare. Adv. Funct. Mater. 2021, 31, 2008123. https://doi.org/10.1002/adfm.202008123.
- 4.
Zhang, X.; Zhang, P.P.; Lu, M.; Qi, D.M.; Müller-Buschbaum, P.; Zhong, Q. Synergistic Stain Removal Achieved by Controlling the Fractions of Light and Thermo Responsive Components in the Dual-Responsive Copolymer Immobilized on Cotton Fabrics by Cross-Linker. ACS Appl. Mater. Interfaces 2021, 13, 27372–27381. https://doi.org/10.1021/acsami.1c03290.
- 5.
Ueki, T.; Watanabe, M. Polymers in Ionic Liquids: Dawn of Neoteric Solvents and Innovative Materials. Bull. Chem. Soc. Jpn. 2012, 85, 33–50. https://doi.org/10.1246/bcsj.20110225.
- 6.
Das, A.; Babu, A.; Chakraborty, S.; Van Guyse, J.F.R.; Hoogenboom, R.; Maji, S. Poly(-isopropylacrylamide) and Its Copolymers: A Review on Recent Advances in the Areas of Sensing and Biosensing. Adv. Funct. Mater. 2024, 34, 2402432. https://doi.org/10.1002/adfm.202402432.
- 7.
Jiang, L.; Qin, D.N.; Zhang, C.F.; Cui, J.B.; Xu, X.Y.; Hu, R.; Zhang, P.; Hu, L. Poly(-isopropylacrylamide) Microgel-Based Sensor for Clinical-Level X-ray Dose Measurements. ACS Appl. Polym. Mater. 2023, 5, 10073–10080. https://doi.org/10.1021/acsapm.3c01924.
- 8.
Bergbreiter, D.E.; Case, B.L.; Liu, Y.S.; Caraway, J.W. Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis. Macromolecules 1998, 31, 6053–6062. https://doi.org/10.1021/ma980836a.
- 9.
Liu, M.; Song, X.; Wen, Y.T.; Zhu, J.L.; Li, J. Injectable Thermoresponsive Hydrogel Formed by Alginate—Poly(-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS Appl. Mater. Interfaces 2017, 9, 35673–35682. https://doi.org/10.1021/acsami.7b12849.
- 10.
Kim, T.H.; Choi, J.G.; Byun, J.Y.; Jang, Y.; Kim, S.M.; Spinks, G.M.; Kim, S.J. Biomimetic Thermal-sensitive Multi-transform Actuator. Sci. Rep. 2019, 9, 7905. https://doi.org/10.1038/s41598-019-44394-x.
- 11.
Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-walking gel. Adv. Mater. 2007, 19, 3480–3484. https://doi.org/10.1002/adma.200700625.
- 12.
Shibayama, M. Physics of polymer gels: Toyoichi Tanaka and after. Soft Matter. 2025, 21, 1995–2009. https://doi.org/10.1039/d4sm01418a.
- 13.
Takeoka, Y.; Watanabe, M. Polymer gels that memorize structures of mesoscopically sized templates. Dynamic and optical nature of periodic ordered mesoporous chemical gels. Langmuir 2002, 18, 5977–5980. https://doi.org/10.1021/la020133t.
- 14.
Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-Type Grafted Hydrogels with Rapid De-Swelling Response to Temperature-Changes. Nature 1995, 374, 240–242. https://doi.org/10.1038/374240a0.
- 15.
Yasumoto, A.; Gotoh, H.; Gotoh, Y.; Bin Imran, A.; Hara, M.; Seki, T.; Sakai, Y.; Ito, K.; Takeoka, Y. Highly Responsive Hydrogel Prepared Using Poly(N-isopropylacrylamide)-Grafted Polyrotaxane as a Building Block Designed by Reversible Deactivation Radical Polymerization and Click Chemistry. Macromolecules 2017, 50, 364–374. https://doi.org/10.1021/acs.macromol.6b01955.
- 16.
Jochi, Y.; Seki, T.; Soejima, T.; Satoh, K.; Kamigaito, M.; Takeoka, Y. Spontaneous synthesis of a homogeneous thermoresponsive polymer network composed of polymers with a narrow molecular weight distribution. NPG Asia Mater. 2018, 10, 840–848. https://doi.org/10.1038/s41427-018-0074-x.
- 17.
Okaya, Y.; Jochi, Y.; Seki, T.; Satoh, K.; Kamigaito, M.; Hoshino, T.; Nakatani, T.; Fujinami, S.; Takata, M.; Takeoka, Y. Precise Synthesis of a Homogeneous Thermoresponsive Polymer Network Composed of Four-Branched Star Polymers with a Narrow Molecular Weight Distribution. Macromolecules 2020, 53, 374–386. https://doi.org/10.1021/acs.macromol.9b01616.
- 18.
Kwon, D.; Jochi, Y.; Okaya, Y.; Seki, T.; Satoh, K.; Kamigaito, M.; Hoshino, T.; Urayama, K.; Takeoka, Y. Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods. Macromolecules 2021, 54, 5750–5764. https://doi.org/10.1021/acs.macromol.1c00446.
- 19.
Hiei, Y.; Ohshima, I.; Hara, M.; Seki, T.; Hoshino, T.; Takeoka, Y. Shrinking rates of polymer gels composed of star-shaped polymers of N-isopropylacrylamide and dimethylacrylamide copolymers: the effect of dimethylacrylamide on the crosslinking network. Soft Matter. 2022, 18, 5204–5217. https://doi.org/10.1039/d2sm00402j.
- 20.
Gao, G.H.; Hara, M.; Seki, T.; Takeoka, Y. Synthesis of thermo-responsive polymer gels composed of star-shaped block copolymers by copper-catalyzed living radical polymerization and click reaction. Sci. Technol. Adv. Mater. 2024, 25, 2302795. https://doi.org/10.1080/14686996.2024.2302795.
- 21.
Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003.
- 22.
Li, X.; Nakagawa, S.; Tsuji, Y.; Watanabe, N.; Shibayama, M. Polymer gel with a flexible and highly ordered three-dimensional network synthesized via bond percolation. Sci. Adv. 2019, 5, eaax8647. https://doi.org/10.1126/sciadv.aax8647.
- 23.
Shibayama, M. Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol. Chem. Phys. 1998, 199, 1–30.
- 24.
Matsunaga, T.; Sakai, T.; Akagi, Y.; Chung, U.; Shibayama, M. Structure Characterization of Tetra-PEG Gel by Small-Angle Neutron Scattering. Macromolecules 2009, 42, 1344–1351. https://doi.org/10.1021/ma802280n.
- 25.
Tanaka, T.; Ishiwata, S.; Ishimoto, C. Critical Behavior of Density Fluctuations in Gels. Phys. Rev. Lett. 1977, 38, 771–774. https://doi.org/10.1103/PhysRevLett.38.771.