2512002641
  • Open Access
  • Article

Magnetic Assembly of Nonuniform Nanocrystal Clusters into Responsive Photonic Crystals

  • Fenglian Qi 1,2,   
  • Qingsong Fan 2,   
  • Chaolumen Wu 2,   
  • Yadong Yin 2,*

Received: 05 Dec 2025 | Revised: 23 Dec 2025 | Accepted: 25 Dec 2025 | Published: 26 Dec 2025

Abstract

Colloidal assembly of photonic crystals typically relies on uniform building blocks to achieve the required periodicity. However, the difficulties in large-scale production of uniform particles limit the practical use of colloidal photonic crystals in many exciting applications. Here, we show that this uniformity requirement can be relaxed by increasing the interparticle spacing during colloidal magnetic assembly, enabling the formation of responsive photonic crystals from particles with a broader size range. Specifically, we demonstrate that magnetite nanocrystal clusters with a wide size range of 40–60 nm, formed by breaking their large aggregates via ultrasonication in the presence of polymeric ligands, can be magnetically assembled in solution into one-dimensional photonic crystals with tunable optical diffraction across the entire visible spectrum. The strong electrostatic repulsion imparted by the polymeric ligands results in large interparticle separation, reducing the negative impact of low particle uniformity and enabling the required periodicity for notable diffraction and broad spectral tunability.

Graphical Abstract

References 

  • 1.

    Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522.

  • 2.

    Li, Z.; Yin, Y. Stimuli-Responsive Optical Nanomaterials. Adv. Mater. 2019, 31, 1807061.

  • 3.

    Li, Z.; Yang, F.; Yin, Y. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater. 2020, 30, 1903467.

  • 4.

    Hou, J.; Li, M.; Song, Y. Patterned colloidal photonic crystals. Angew. Chem. Int. Ed. 2018, 57, 2544–2553.

  • 5.

    Li, F.H.; Tang, B.T.; Wu, S.L.; Zhang, S.F. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle. Small 2017, 13, 1602565. https://doi.org/10.1002/smll.201602565.

  • 6.

    Zhang, Y.; Fu, Q.; Ge, J. Test-Paper-Like Photonic Crystal Viscometer. Small 2017, 13, 1603351. https://doi.org/10.1002/smll.201603351.

  • 7.

    Hou, K.; Ali, W.; Lv, J.; Guo, J.; Shi, L.; Han, B.; Wang, X.; Tang, Z. Optically Active Inverse Opal Photonic Crystals. J. Am. Chem. Soc. 2018, 140, 16446–16449. https://doi.org/10.1021/jacs.8b10977.

  • 8.

    Shang, L.R.; Fu, F.F.; Cheng, Y.; Yu, Y.R.; Wang, J.; Gu, Z.Z.; Zhao, Y.J. Bioinspired Multifunctional Spindle-Knotted Microfibers from Microfluidics. Small 2017, 13, 1600286. https://doi.org/10.1002/smll.201600286.

  • 9.

    Fenzl, C.; Hirsch, T.; Wolfbeis, O.S. Photonic Crystals for Chemical Sensing and Biosensing. Angew. Chem.-Int. Ed. 2014, 53, 3318–3335. https://doi.org/10.1002/anie.201307828.

  • 10.

    Fu, F.; Chen, Z.; Zhao, Z.; Wang, H.; Shang, L.; Gu, Z.; Zhao, Y. Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. USA 2017, 114, 5900–5905. https://doi.org/10.1073/pnas.1703616114.

  • 11.

    Wang, J.; Sultan, U.; Goerlitzer, E.S.A.; Mbah, C.F.; Engel, M.; Vogel, N. Structural Color of Colloidal Clusters as a Tool to Investigate Structure and Dynamics. Adv. Funct. Mater. 2019, 30, 1907730. https://doi.org/10.1002/adfm.201907730.

  • 12.

    Lu, W.; Asher, S.A.; Meng, Z.H.; Yan, Z.Q.; Xue, M.; Qiu, L.L.; Yi, D. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal. J. Hazard. Mater. 2016, 316, 87–93. https://doi.org/10.1016/j.jhazmat.2016.05.022.

  • 13.

    Qin, M.; Huang, Y.; Li, Y.; Su, M.; Chen, B.; Sun, H.; Yong, P.; Ye, C.; Li, F.; Song, Y. A Rainbow Structural-Color Chip for Multisaccharide Recognition. Angew. Chem. 2016, 55, 6911–6914. https://doi.org/10.1002/anie.201602582.

  • 14.

    Zhao, Z.; Wang, H.; Shang, L.; Yu, Y.; Fu, F.; Zhao, Y.; Gu, Z. Bioinspired Heterogeneous Structural Color Stripes from Capillaries. Adv. Mater. 2017, 29, 1704569. https://doi.org/10.1002/adma.201704569.

  • 15.

    Fu, Q.; Zhu, H.; Ge, J. Electrically Tunable Liquid Photonic Crystals with Large Dielectric Contrast and Highly Saturated Structural Colors. Adv. Funct. Mater. 2018, 28, 1804628. https://doi.org/10.1002/adfm.201804628.

  • 16.

    Reese, C.E.; Baltusavich, M.E.; Keim, J.P.; Asher, S.A. Development of an intelligent polymerized crystalline colloidal array colorimetric reagent. Anal. Chem. 2001, 73, 5038–5042.

  • 17.

    Ward Muscatello, M.M.; Stunja, L.E.; Thareja, P.; Wang, L.; Bohn, J.J.; Velankar, S.S.; Asher, S.A. Dependence of photonic crystal nanocomposite elasticity on crystalline colloidal array particle size. Macromolecules 2009, 42, 4403–4406.

  • 18.

    Ge, J.; Hu, Y.; Yin, Y. Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. 2007, 46, 7428–7431. https://doi.org/10.1002/anie.200701992.

  • 19.

    Ge, J.; Hu, Y.; Zhang, T.; Huynh, T.; Yin, Y. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 2008, 24, 3671–3680. https://doi.org/10.1021/la7039493.

  • 20.

    Luo, W.; Ma, H.; Mou, F.; Zhu, M.; Yan, J.; Guan, J. Steric-Repulsion-Based Magnetically Responsive Photonic Crystals. Adv. Mater. 2014, 26, 1058–1064. https://doi.org/10.1002/adma.201304134.

  • 21.

    Li, Z.; Yin, S.; Cheng, L.; Yang, K.; Li, Y.; Liu, Z. Magnetic targeting enhanced theranostic strategy based on multimodal imaging for selective ablation of cancer. Adv. Funct. Mater. 2014, 24, 2312–2321.

  • 22.

    Cheng, C.; Xu, F.; Gu, H. Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J. Chem. 2011, 35, 1072–1079. https://doi.org/10.1039/c0nj00986e.

  • 23.

    Chen, J.; Feng, J.; Li, Z.; Xu, P.; Wang, X.; Yin, W.; Wang, M.; Ge, X.; Yin, Y. Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation. Nano Lett. 2019, 19, 400–407. https://doi.org/10.1021/acs.nanolett.8b04157.

  • 24.

    Xu, W.; Wang, M.; Li, Z.; Wang, X.; Wang, Y.; Xing, M.; Yin, Y. Chemical Transformation of Colloidal Nanostructures with Morphological Preservation by Surface-Protection with Capping Ligands. Nano Lett. 2017, 17, 2713–2718. https://doi.org/10.1021/acs.nanolett.7b00758.

  • 25.

    Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W.P.; Yin, Y. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angew. Chem. Int. Ed. 2007, 46, 4342–4345. https://doi.org/10.1002/anie.200700197.

  • 26.

    Das, K.K.; Somasundaran, P. Ultra-low dosage flocculation of alumina using polyacrylic acid. Colloids Surf. Physicochem. Eng. Asp. 2001, 182, 25–33. https://doi.org/10.1016/S0927-7757(00)00735-4.

  • 27.

    Liu, L.; Luo, S.-Z.; Wang, B.; Guo, Z. Investigation of small molecular weight poly(acrylic acid) adsorption on γ-alumina. Appl. Surf. Sci. 2015, 345, 116–121. https://doi.org/10.1016/j.apsusc.2015.03.145.

  • 28.

    Liu, S.; Ye, Z.; Yin, Y. Seeded Growth of Plasmonic Nanostructures in Deformable Polymer Confinement. Langmuir 2024, 40, 8760–8770. https://doi.org/10.1021/acs.langmuir.4c00706.

  • 29.

    Ye, Z.; Tai, Y.; Han, Z.; Liu, S.; Etheridge, M.L.; Pasek-Allen, J.L.; Shastry, C.; Liu, Y.; Li, Z.; Chen, C.; et al. Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming. Nano Lett. 2024, 24, 4588–4594. https://doi.org/10.1021/acs.nanolett.4c00721.

  • 30.

    Hu, Y.; He, L.; Yin, Y. Magnetically Responsive Photonic Nanochains. Angew. Chem.-Int. Ed. 2011, 50, 3747–3750. https://doi.org/10.1002/anie.201100290.

  • 31.

    Li, Z.; Wang, M.; Zhang, X.; Wang, D.; Xu, W.; Yin, Y. Magnetic Assembly of Nanocubes for Orientation-Dependent Photonic Responses. Nano Lett. 2019, 19, 6673–6680. https://doi.org/10.1021/acs.nanolett.9b02984.

  • 32.

    Li, Z.; Liu, Y.; Marin, M.; Yin, Y. Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Res. 2020, 13, 1882–1888.

  • 33.

    Xue, X.; Furlani, E.P. Analysis of the Dynamics of Magnetic Core–Shell Nanoparticles and Self-Assembly of Crystalline Superstructures in Gradient Fields. J. Phys. Chem. C 2015, 119, 5714–5726. https://doi.org/10.1021/jp513025w.

  • 34.

    Liu, Y.; Han, X.; He, L.; Yin, Y. Thermoresponsive Assembly of Charged Gold Nanoparticles and Their Reversible Tuning of Plasmon Coupling. Angew. Chem.-Int. Ed. 2012, 51, 6373–6377.

Share this article:
How to Cite
Qi, F.; Fan, Q.; Wu, C.; Yin, Y. Magnetic Assembly of Nonuniform Nanocrystal Clusters into Responsive Photonic Crystals. Materials and Interfaces 2025, 2 (4), 455–464. https://doi.org/10.53941/mi.2025.100036.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.